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1. This paper treats the approximation theorem on the stability
theory of dynamical systems given by stochastic differential equations.
Consider a dynamical system in R"

( 1 ) dx,(t) , a,(x(t))dB(t) / b,(x(t))dt (i= 1, ..., n)

(in this paper, we always assume that coefficients of (1) are Lipschitz
continuous). If we assume that for m>__ 1

+ o(lxl( 2 )
(b,(x) ,(2)Ix[-+ o([xl-)

where --x/Ixl, then the first approximation of (1) is defined by
( 8 ) dx,(t) ] #**(2(t)) Ix(t)I dB(t) + ,(2(t)) Ix(t)]2- dr.

Following to Khas’minskii [2], we call x(t) asymptotic stable in
probability if lim P{limlx(t)l=O}=l, asymptotic unstable in prob-

Ix I-0 t-

ability if P {lim Ix(t)l=}=l for all x (=/={0}), divergent in probability

if P {sup x(t)l>} 1 for all x (=/: {0}) and small >0.
>0

The main theorems are"

Theorem 1. If the solution of (3) is asymptotic stable in prob-
ability, then that of (1) is so.

Theorem 2. If the solution of (3) is asymptotic unstable in prob-
ability, then that of (1) is divergent in probability.
When m= 1, the results have been already proved by Khas’minskii [2]
and Pinsky [4].

In 2 we sketch proofs of Theorems 1 and 2. In 3 they are
applied to a limit behaviour of a stochastic process on a two dimensional
compact manifold, which is useful for studying the stability of three
dimensional linear systems (see [1]).
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2. Remark 1o In this section it will be proved that the stability
of (3) is equivalent to that of
( 4 ) dxt(t)= ,(2(t))[x(tl) dB(t)+b,(2(t))Ix(t)l dr.

Thus, a little modification of Khas’minskii’s sharp stability criterion
formulated in [1] is applicable to (3).


