6. On Polythetic Groups

By Reri TAKAMATSU Department of Mathematics, Sophia University (Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1976)

§ 1. Let G be a locally compact abelian (LCA) group and Z be the additive group of integers. We say G is polythetic if it has a dense subgroup which is a homomorphic image of Z^n . In other words G is to contain n elements x_1, \dots, x_n such that the subgroup

 ${m_1x_1 + \cdots + m_nx_n; (m_1, \cdots, m_n) \in Z^n}$

is dense in G. We call such elements x_1, \dots, x_n 'generators of G'.

In the case n=1, G is called *monothetic* and for compact monothetic groups their characterization is stated in terms of their duals by Halmos and Samelson [1]. In this paper we have characterization of LCA polythetic groups by their structures and the smallest numbers of their generators. For the terminologies and notations in this note, see Rudin [2].

The author wishes to thank Professor M. Nagumo for his valuable suggestions.

§ 2. For a LCA polythetic group G let A(G) be the set of integers n > 0 such that there exists a homomorphic image of Z^n which is dense in G. Clearly A(G) has the smallest element, which we denote by s(G).

Now we state the characterization of compact polythetic groups.

The annihilator Λ of a closed subgroup H of G is the set of all $\gamma \in \Gamma$ (the dual group of G) such that $(x, \gamma) = 1$ for all $x \in H$. Λ forms a closed subgroup of Γ .

Lemma 1. For $i=1, \dots, n$, let H_i be the closure of the subgroup generated by $x_i \in G$, Λ_i be its annihilator, and let H be the subgroup of G generated by x_1, \dots, x_n . H is dense in G if and only if $\bigcap_{i=1}^{n} \Lambda_i = \{0\}$.

We denote by T the multiplicative group of all complex numbers of absolute value 1 with the usual topology (or equivalently the additive group of real numbers mod 2π) and by T_d the same group with the discrete topology.

Theorem 1. Let G be a compact abelian group. G is polythetic if and only if Γ is isomorphic to a subgroup of T_a^n .

Proof. If G is polythetic, G has generators x_1, \dots, x_n . Since the natural mapping α of T_d^n onto T^n is an algebraic isomorphism, the mapping $\gamma \rightarrow \alpha^{-1}((x_1, \gamma), \dots, (x_n, \gamma))$ is an isomorphism of Γ into T_d^n , be-