1. The Exact Functor Theorem for BP_*/I_n . Theory

By Nobuaki YAGITA

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1976)

§ 1. Let p be a prime number and $BP_*(-)$ be the Brown-Peterson homology theory with the coefficient $BP_* \simeq Z_{(p)}[v_1, \cdots]$. Landweber proved the following theorem [4].

Exact functor theorem. Let G be a BP_* -module and $I_n = (p, v_1, \dots, v_n)$ be the ideal of BP_* generated by p, v_1, \dots, v_n . Then if the homomorphism

 $v_{n+1}: G/I_nG \to G/I_nG, \quad v_{n+1}(g) = v_{n+1} \cdot g,$ is monic for each $n \ge -1$, then $BP_*(-) \bigotimes_{BP_*} G$ is a homology theory.

On the other hand Sullivan-Baas constructed bordism theories with singularities (Math. Scan. 33, 1973). Analogously we can define the homology theory $BP(I_n)_*(-)$ with the coefficient $BP_*/I_n \simeq Z_p[v_{n+1}, \cdots]$ [2], [8]. In this paper we shall prove the exact functor theorem for $BP(I_n)_*$ -theory.

Theorem. Let G be a BP_*/I_n -module. If the homomorphism $v_{m+1}: G/I_mG \rightarrow G/I_mG$

is monic for each $m \ge n$, then $BP(I_n)_*(-) \bigotimes_{BP_*/I_n} G$ is a homology theory.

Remark. We always consider *reduced* homology theories in the category of *finite CW*-complexes.

I would like to take this opportunity to thank Professors D.C. Johnson, P. Landweber, S. Sasao and Z. Yosimura for their helpful suggestions in preparing this paper.

§ 2. First, we take argument in the cohomology theory $BP(I_n)^*(-)$ which is the Spanier-Whitehead dual to $BP(I_n)_*(-)$.

Lemma 1. Let M be a finitely generated BP^*/I_n - and $BP(I_n)^*$ $(BP(I_n))$ -module. Then there exists a BP^*/I_n -filtration such that

 $(1) M = M_0 \supset M_1 \supset \cdots \supset M_k = \{0\}$

(2) $M_s/M_{s+1} \simeq BP^*/J_s$ for $0 \leq s < k$

where J_s is an (invariant) ideal of BP^* satisfying $\theta(J_s) \subset J_s$ for any operation $\theta \in BP^*(BP)$.

Proof. For each $\theta \in BP^*(BP)$, let $\overline{\theta}_n$ be the set of $\theta_n \in BP(I_n)^*(BP(I_n))$ which commute the following diagram.

$$egin{array}{ccc} BP & \stackrel{i}{\longrightarrow} BP(I_n) \ & & & \downarrow_{ heta_n} \ S^m BP & \stackrel{i}{\longrightarrow} S^m BP(I_n) \end{array}$$