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Let k& be a finite field, and k, the quadratic extension of k. The
purpose of the present paper is to announce a theorem which gives a
method to construct the irreducible characters of the finite unitary
group U,(k,) using those of the finite general linear group GL,(k,), at
least if the characteristic of k is not 2. As an application, we also
obtain a parametrization of the irreducible characters of U,(k,) which
is dual to a known parametrization of the conjugacy classes. Proofs
are omitted and will appear elsewhere.

1. Let & be the general linear group GL,(K) over an algebraically
closed field K of positive characteristic p. Let k be a finite subfield
of K, and k,(CK) the extension of k of degree m <co. We denote by
7 the Frobenius automorphism of K with respect to k. Then 7 acts
naturally on & as an automorphism. Let ¢ be the automorphism of
@& defined by

=2 (xe©®),
where ‘x is the transposed matrix of x € . For a positive integer m,
put
Gm={re G|lx"=u}.
Then we have
© = {GLn(km) if m is even,
U Keym) if m-is odd.

In the following, we fix m and put G=6,. and G,=6,=U,(k,).
The restriction of ¢ to G is an automorphism of the finite group G. In
the following, we denote this automorphism also by ¢. Let A be the
cyclic group of order m generated by the automorphism ¢ of G. As-
sume that G and A are embedded in their semi-direct product GA. The
following lemma is well known.

Lemma 1. Let H be a finite group, and A a finite cyclic group
generated by an automorphism ¢ of H. If an irreducible complex
character x of H is fixed by ¢ (i.e. satisfies y(x°)=yx(x) for all x € H),
then there exists an irreducible character j of the semi-direct product
HA whose restriction to H equals y.

For x e G=G,., put N(x)=xx 2" - . """,



