61. On Higher Coassociativity

By Shiroshi SAITO

(Comm. by Kenjiro SHODA, M. J. A., May 12, 1976)

In this note, we generalize the coassociativity of co-H-spaces and primitive maps among them, and give a relation between A'_4 -spaces and their coretractions. We work in the category of based spaces having the homotopy types of *CW*-complexes and based maps. Details will appear in [2].

Let K_n $(n \ge 2)$ be Stasheff's convex polyhedron [3], which admits face maps $\partial_k(r,s): K_r \times K_s \to K_n, r+s=n+1, 1 \le k \le r$, and degeneracy maps $s_j: K_n \to K_{n-1}, 1 \le j \le n$, satisfying suitable *FD*-commutativities. For a given based space $X, W_n(X)$ denotes the wedge product of *n*copies of X, (i, x) denotes the element whose *i*-th factor is x.

Definition 1. A space X is an A'_n -space, if there exists an A'_n -structure $\{M'_{x,i}: X \times K_i \rightarrow W_i(X)\}_{2 \le i \le n}$ satisfying the following conditions:

(1.1) $\mu'_{x} = M'_{x,2}$ is a comultiplication with the counit $*: X \to *$, where * is the base point of X;

(1.2) for any $(\rho, \sigma) \in K_r \times K_s$, r+s=i+1, it holds

 $M'_{i}(; \partial_{k}(r, s)(\rho, \sigma)) = M'_{s}(; \sigma)(k) \cdot M'_{r}(; \rho),$

where $M'_{s}(; \sigma)(k)$ implies $M'_{s}(; \sigma)$ is applied on the k-th factor and 1 is applied on other factors;

(1.3) for $i \ge 3$, there exist homotopies

 $D'_{X,i,j}: M'_{i-1}(; s_j(\tau)) \simeq p_j M'_i(; \tau)$

where $p_j = \bigtriangledown(j) \cdot *(j)$ and $\bigtriangledown : X \lor X \rightarrow X$ is the folding map.

Definition 2. An A'_n -space X $(n \ge 3)$ is an A'_n -cogroup, if there exists a coinversion $\nu'_X : X \to X$ such that it holds $\nabla \cdot (1 \lor \nu'_X) \cdot \mu'_X \simeq * \simeq \nabla \cdot (\nu'_X \lor 1) \cdot \mu'_X$.

Definition 3. A map $f: X \to Y$ of A'_n -spaces is an A'_n -map if there exist homotopies $H'_i: X \times K_i \times I \to W_i(Y), 2 \leq i \leq n$, such that

(3.1) $H'_i((x; \tau), 0) = W_i(f) \cdot M'_{X,i}(x; \tau)$

and

$$H'_{i}((x; \tau); 1) = M'_{Y,i}(f(x); \tau);$$

(3.2) for any
$$\partial_k(r, s)$$
, $r+s=i+1, 1 \le k \le r$,

there exists a homeomorphism $\tilde{\partial}_k(r, s)$ of $K_r \times K_s \times I$ into $\partial K_i \times I$ which preserves level and satisfies