60. Scalar Extension of Quadratic Lattices

By Yoshiyuki Kitaoka
Nagoya University
(Comm. by Kenjiro Shoda, m. J. A., May 12, 1976)

Let E / F be a finite extension of algebraic number fields, $\mathcal{O}_{E}, \mathcal{O}_{F}$ the maximal orders of E, F respectively. Let L, M be quadratic lattices over \mathcal{O}_{F} in regular quadratic spaces U, V over F respectively; then we are concerned about the following question:

We assume:
(*) there is an isometry σ from $\mathcal{O}_{E} L$ onto $\mathcal{O}_{E} M$, where $\mathcal{O}_{E} L, \mathcal{O}_{E} M$ denote tensor products of \mathcal{O}_{E} and L, M over \mathcal{O}_{F} respectively.

Does the assumption imply $\sigma(L)=M$?
The answer is negative if a quadratic space $E U(\cong E V)$ is indefinite. Even if we suppose that $E U$ is definite, the answer is negative in general. However it seems to be affirmative if we confine ourselves to the following cases:
F : the field \boldsymbol{Q} of rational numbers,
E : a totally real algebraic number field,
$L, M: \quad$ definite quadratic lattices over the ring Z of rational integers.
We give some evidences here. Detailed proofs will appear elsewhere.

Theorem 1. Let m be an integer ≥ 2, and E be a totally real algebraic number field with degree m, and assume that L, M be definite quadratic lattices over \boldsymbol{Z}. Then the assumption (*) implies $\sigma(L)=M$, if E does not contain a finite number of (explicitly determined) algebraic integers whicn are not dependent on L, M, but on m.

Theorem 2. Let E be totally real, and L, M be binary or ternary definite quadratic lattices over \boldsymbol{Z}. The assumption (*) implies $\sigma(L)$ $=M$.

Corollary. Let E, K be a totally real algebraic number field and an imaginary quadratic field respectively whose discriminants are relatively prime. Then an ideal of K is principal if it is principal in a composite field KE.

Theorem 3. Let E be a real quadratic, totally real cubic or totally real Dirichlet's biquadratic field, and L, M be definite quadratic lattices over Z. Then the assumption (*) implies $\sigma(L)=M$.

In case that $L=M$ and σ gives an orthogonal decomposition of

