58. A Family of Pseudo-Differential Operators and a Stability Theorem for the Friedrichs Scheme

By Zen'ichirô Koshiba** and Hitoshi Kumano-G0**)
(Comm. by Kôsaku Yosida, m. J. A., May 12, 1976)

§ 0. Introduction. In this note we shall study an algebra of a family of pseudo-differential operators and try to apply this theory to the stability theory of the Friedrichs scheme. The class $\left\{S_{\lambda_{n}^{m}}^{m}\right\}$ of pseudodifferential operators is defined by a family of basic weight functions $\lambda_{h}(\xi)(0<h<1)$ as in [4], [5] and [2].

For the application to the stability theory we have to define two subclasses $\left\{\dot{S}_{\lambda_{h}}^{m}\right\}$ and $\left\{\tilde{S}_{\lambda_{h}}^{m}\right\}$ of $\left\{S_{\lambda_{h}}^{m}\right\}$ as the sets of all the symbols $p_{h}(x, \xi)$ such that $h^{-1} p_{h} \in\left\{S_{\lambda_{h}}^{m+1}\right\}$ and $h^{-1} \partial_{\xi}^{\alpha} p_{h} \in\left\{S_{\lambda_{h}}^{m+1-|\alpha|}\right\}$ for any $\alpha \neq 0$, respectively. We have also to derive 'the principle of cutting off' a symbol $p_{h}(x, \xi)$ of class $\left\{S_{\lambda_{h}}^{m}\right\}$ by $\chi\left(\lambda_{h}(\xi)\right.$) (or $\varphi\left(\zeta_{h}(\xi)\right.$)) (see Theorem 1.9). Then, we can treat difference schemes as a family of pseudo-differential operators, and prove a stability theorem of the Friedrichs schemes for a diagonalizable hyperbolic system. We note that this theorem is regarded as the general form of the Yamaguti-Nogi-Vaillancourt stability theorem in [7], [8] and [9], and note that the theorem holds without the restriction on the behavior of symbols $p_{h}(x, \xi)$ at $x=\infty$.
§1. A family of pseudo-differential operators.
Definition 1.1. A family $\left\{\lambda_{h}(\xi)\right\}_{0<h<1}$ of real valued C^{∞}-functions in R^{n} is called a basic weight function, when there exist positive constants A_{0}, A_{α} (independent of $0<h<1$) such that (1.1) $1 \leqq \lambda_{h}(\xi) \leqq A_{0}\langle\xi\rangle,\left|\lambda_{h}^{(\alpha)}(\xi)\right| \leqq A_{\alpha} \lambda_{h}(\xi)^{1-|\alpha|} \quad$ for any α, where $\langle\xi\rangle=\left\{1+|\xi|^{2}\right\}^{1 / 2}, \lambda_{h}^{(\alpha)}=\partial_{\xi}^{\alpha} \lambda_{h}$ for $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$.

Example. An important example of this note is defined by (1.2) $\lambda_{h}(\xi)=\left\langle\zeta_{h}(\xi)\right\rangle, \zeta_{h}(\xi)=\left(h^{-1} \sin h \xi_{1}, \cdots, h^{-1} \sin h \xi_{n}\right)$ (see [4], [5]).

Definition 1.2. i) A family $\left\{p_{h}\right\}$ of C^{∞}-symbols $p_{h}(x, \xi)$ in $R_{x}^{n} \times R_{\xi}^{n}$ $(0<h<1)$ is called of class $\left\{S_{\lambda_{n}}^{m}\right\}(-\infty<m<\infty)$, when there exist constants $C_{\alpha, \beta}$ (independent of $0<h<1$) such that
(1.3) $\quad\left|p_{h(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{\alpha, \beta} \lambda_{h}(\xi)^{m-|\alpha|} \quad$ for any α, β,
where $p_{h(\beta)}^{(\alpha)}=\partial_{\xi}^{\alpha} D_{x}^{\beta} p_{h} \quad\left(D_{x}=-i \partial_{x}\right)$. We set $\left\{S_{\lambda_{h}^{-\infty}}^{-\infty}\right\}=\bigcap_{m}\left\{S_{\lambda_{h}}^{m}\right\}$ and $\left\{S_{\alpha_{h}}^{\infty}\right\}$ $=\bigcup_{m}\left\{S_{\lambda_{n}}^{m}\right\}$.
ii) A family $\left\{P_{h}\right\}$ of linear operators $P_{h}: \mathcal{S} \rightarrow \mathcal{S}$ is called a pseudodifferential operator of class $\left\{S_{\lambda_{h}}^{m}\right\}$ with symbol $p_{h}(x, \xi)$, when there

[^0]
[^0]: *) Department of Mathematics, Shinshû University.
 **) Department of Mathematics, Osaka University.

