58. A Family of Pseudo-Differential Operators and a Stability Theorem for the Friedrichs Scheme

By Zen'ichirô Koshiba*) and Hitoshi Kumano-go**) (Comm. by Kôsaku Yosida, m. J. a., May 12, 1976)

§ 0. Introduction. In this note we shall study an algebra of a family of pseudo-differential operators and try to apply this theory to the stability theory of the Friedrichs scheme. The class $\{S_{\lambda_h}^m\}$ of pseudo-differential operators is defined by a family of basic weight functions $\lambda_h(\xi)$ $(0 \le h \le 1)$ as in [4], [5] and [2].

For the application to the stability theory we have to define two subclasses $\{\mathring{S}_{\lambda_h}^m\}$ and $\{\widetilde{S}_{\lambda_h}^m\}$ of $\{S_{\lambda_h}^m\}$ as the sets of all the symbols $p_h(x,\xi)$ such that $h^{-1}p_h\in \{S_{\lambda_h}^{m+1}\}$ and $h^{-1}\partial_\epsilon^\alpha p_h\in \{S_{\lambda_h}^{m+1-|\alpha|}\}$ for any $\alpha\neq 0$, respectively. We have also to derive 'the principle of cutting off' a symbol $p_h(x,\xi)$ of class $\{S_{\lambda_h}^m\}$ by $\chi(\lambda_h(\xi))$ (or $\varphi(\zeta_h(\xi))$) (see Theorem 1.9). Then, we can treat difference schemes as a family of pseudo-differential operators, and prove a stability theorem of the Friedrichs schemes for a diagonalizable hyperbolic system. We note that this theorem is regarded as the general form of the Yamaguti-Nogi-Vaillancourt stability theorem in [7], [8] and [9], and note that the theorem holds without the restriction on the behavior of symbols $p_h(x,\xi)$ at $x=\infty$.

§1. A family of pseudo-differential operators.

Definition 1.1. A family $\{\lambda_h(\xi)\}_{0< h<1}$ of real valued C^{∞} -functions in R^n is called a basic weight function, when there exist positive constants A_0 , A_{α} (independent of 0 < h < 1) such that

$$\begin{array}{ll} (1.1) & 1 \leq \lambda_h(\xi) \leq A_0 \langle \xi \rangle, \ |\lambda_h^{(\alpha)}(\xi)| \leq A_\alpha \lambda_h(\xi)^{1-|\alpha|} & \text{for any } \alpha, \\ \text{where } \langle \xi \rangle = \{1 + |\xi|^2\}^{1/2}, \ \lambda_h^{(\alpha)} = \partial_{\xi}^{\alpha} \lambda_h \text{ for } \alpha = (\alpha_1, \cdots, \alpha_n). \end{array}$$

Example. An important example of this note is defined by

(1.2) $\lambda_h(\xi) = \langle \zeta_h(\xi) \rangle$, $\zeta_h(\xi) = (h^{-1} \sin h \xi_1, \dots, h^{-1} \sin h \xi_n)$ (see [4], [5]).

Definition 1.2. i) A family $\{p_h\}$ of C^{∞} -symbols $p_h(x,\xi)$ in $R_x^n \times R_{\xi}^n$ $(0 \le h \le 1)$ is called of class $\{S_{\lambda_h}^m\}$ $(-\infty \le m \le \infty)$, when there exist constants $C_{\alpha,\beta}$ (independent of $0 \le h \le 1$) such that

$$(1.3) \qquad |p_{h(\beta)}^{(\alpha)}(x,\xi)| \leq C_{\alpha,\beta} \lambda_h(\xi)^{m-|\alpha|} \qquad \textit{for any } \alpha,\beta,$$
 where $p_{h(\beta)}^{(\alpha)} = \partial_{\xi}^{\alpha} D_{x}^{\beta} p_{h} \quad (D_{x} = -i\partial_{x}).$ We set $\{S_{\lambda_{h}}^{-\infty}\} = \bigcap_{m} \{S_{\lambda_{h}}^{m}\}$ and $\{S_{\lambda_{h}}^{\infty}\} = \bigcup_{m} \{S_{\lambda_{h}}^{m}\}.$

ii) A family $\{P_h\}$ of linear operators $P_h: \mathcal{S} \to \mathcal{S}$ is called a pseudo-differential operator of class $\{S_{\lambda_h}^m\}$ with symbol $p_h(x,\xi)$, when there

^{*} Department of Mathematics, Shinshû University.

^{**} Department of Mathematics, Osaka University.