75. A Counterexample for the Local Analogy of a Theorem by Iwasawa and Uchida

By Shuji Yamagata
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kenjiro Shoda, m. J. A., June 8, 1976)

Let \boldsymbol{Q} be the rational number field, $\overline{\boldsymbol{Q}}$ the algebraic closure of \boldsymbol{Q} and k_{1}, k_{2} two finite extensions of \boldsymbol{Q} contained in $\overline{\boldsymbol{Q}}$ such that $\operatorname{Gal}\left(\overline{\boldsymbol{Q}} / k_{1}\right) \cong$ $\operatorname{Gal}\left(\overline{\boldsymbol{Q}} / k_{2}\right)$ as topological groups. As K. Iwasawa and K. Uchida have independently proved (cf. [2], [6]), k_{1} and k_{2} are conjugate over \boldsymbol{Q}. In this paper we prove that the analogy for local number fields is not valid: Let p be a prime number, \boldsymbol{Q}_{p} the field of p-adic numbers, $\overline{\boldsymbol{Q}}_{p}$ the algebraic closure of \boldsymbol{Q}_{p}. Then there are finite extensions K_{1}, K_{2} of \boldsymbol{Q}_{p} contained in $\overline{\boldsymbol{Q}}_{p}$ such that $\operatorname{Gal}\left(\overline{\boldsymbol{Q}}_{p} / K_{1}\right) \cong \operatorname{Gal}\left(\overline{\boldsymbol{Q}}_{p} / K_{2}\right)$ as topological groups, and that K_{1} and K_{2} are not conjugate over \boldsymbol{Q}_{p}.
§ 1. Preliminaries. Let K be a local field, i.e. a commutative field which is complete with respect to a discrete valuation, and L / K a finite Galois extension with $G=\operatorname{Gal}(L / K)$ such that the extension of their residue class fields is separable. Let v_{L} be the normalized discrete valuation of L, and put $A_{L}=\left\{a \in L \mid v_{L}(\alpha) \geqq 0\right\}$ and $G_{x}=\left\{s \in G \mid v_{L}(s(a)-\right.$ $a) \geqq x+1$ for all $\left.a \in A_{L}\right\}$ for $x \geqq-1$. The function $\varphi_{L / K}(t)$ for $t \geqq-1$ is given by

$$
\varphi_{L / K}(t)=\int_{0}^{t} \frac{d x}{\left(G_{0}: G_{x}\right)}
$$

Let $\psi_{L / K}$ be the inverse function of $\varphi_{L / K}$ and put $G^{x}=G_{\psi L / K}(x)$. A real number $x \geqq-1$ is called a ramification number of L / K (an upper ramification number of L / K, respectively) if $\left(G_{x}: \bigcup_{0>0} G_{x+0}\right)>1$ (if ($\left.G^{x}: \bigcup_{\bullet>0} G^{x+\iota}\right)>1$, respectively). When L / K has only one ramification number x, x is also the only one upper ramification number of L / K and vice versa. L / K is totally ramified if and only if $G=G_{0}$.

Lemma (cf. [4], p. 197 and p. 198). Let K_{i} / K be a cyclic extension of degree p with only one upper ramification number t_{i} for $i=1,2$, where p is the characteristic of the residue class field of K. Assume that the residue class field extension of K_{i} / K is separable. Put M $=K_{1} K_{2}$. If $t_{1} \neq t_{2}, M / K_{2}$ is a cyclic extension of degree p with only one upper ramification number $\psi_{K_{2} / K}\left(t_{1}\right)$.

In the above situation, we remark that M / K_{2} is totally ramified if K_{1} / K is totally ramified.

Let ζ_{n} be a primitive n-th root of 1 in $\overline{\boldsymbol{Q}}_{p}$.

