75. A Counterexample for the Local Analogy of a Theorem by Iwasawa and Uchida

By Shuji YAMAGATA

Department of Mathematics, Tokyo Institute of Technology

(Communicated by Kenjiro SHODA, M.J.A., June 8, 1976)

Let Q be the rational number field, \bar{Q} the algebraic closure of Qand k_1, k_2 two finite extensions of Q contained in \bar{Q} such that $\operatorname{Gal}(\bar{Q}/k_1) \cong$ $\operatorname{Gal}(\bar{Q}/k_2)$ as topological groups. As K. Iwasawa and K. Uchida have independently proved (cf. [2], [6]), k_1 and k_2 are conjugate over Q. In this paper we prove that the analogy for local number fields is not valid: Let p be a prime number, Q_p the field of p-adic numbers, \bar{Q}_p the algebraic closure of Q_p . Then there are finite extensions K_1, K_2 of Q_p contained in \bar{Q}_p such that $\operatorname{Gal}(\bar{Q}_p/K_1) \cong \operatorname{Gal}(\bar{Q}_p/K_2)$ as topological groups, and that K_1 and K_2 are not conjugate over Q_p .

§ 1. Preliminaries. Let K be a local field, i.e. a commutative field which is complete with respect to a discrete valuation, and L/K a finite Galois extension with G=Gal(L/K) such that the extension of their residue class fields is separable. Let v_L be the normalized discrete valuation of L, and put $A_L = \{a \in L \mid v_L(a) \ge 0\}$ and $G_x = \{s \in G \mid v_L(s(a) - a) \ge x+1 \text{ for all } a \in A_L\}$ for $x \ge -1$. The function $\varphi_{L/K}(t)$ for $t \ge -1$ is given by

$$\varphi_{L/K}(t) = \int_0^t \frac{dx}{(G_0:G_x)}$$

Let $\psi_{L/K}$ be the inverse function of $\varphi_{L/K}$ and put $G^x = G_{\psi_{L/K}(x)}$. A real number $x \ge -1$ is called a ramification number of L/K (an upper ramification number of L/K, respectively) if $(G_x: \bigcup_{\epsilon>0} G_{x+\epsilon}) \ge 1$ (if $(G^x: \bigcup_{\epsilon>0} G^{x+\epsilon}) \ge 1$, respectively). When L/K has only one ramification number x, x is also the only one upper ramification number of L/K and vice versa. L/K is totally ramified if and only if $G=G_0$.

Lemma (cf. [4], p. 197 and p. 198). Let K_i/K be a cyclic extension of degree p with only one upper ramification number t_i for i=1,2, where p is the characteristic of the residue class field of K. Assume that the residue class field extension of K_i/K is separable. Put M $=K_1K_2$. If $t_1 \neq t_2$, M/K_2 is a cyclic extension of degree p with only one upper ramification number $\psi_{K_3/K}(t_1)$.

In the above situation, we remark that M/K_2 is totally ramified if K_1/K is totally ramified.

Let ζ_n be a primitive *n*-th root of 1 in \overline{Q}_p .