93. Finiteness Theorem for Holonomic Systems of Micro-differential Equations

By Masaki KASHIWARA*) and Takahiro KAWAI**)

(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1976)

It is known that the solution space of a holonomic system (=maximally overdetermined system) of linear *differential* equations enjoys a nice finiteness property (Kashiwara [2]). This result naturally raises an interesting question whether analogous results hold for holonomic systems of micro-differential equations (=pseudo-differential equations.) Of course, we should talk about the microfunction solutions in this case and this makes the situations complicated.

However, we can overcome the difficulties by making use of a recent result on the boundary value problem for elliptic systems (Kashiwara-Kawai [4]) on one hand and the concrete representation of the action of micro-differential operators on microfunctions (Kashiwara-Kawai [3] and Bony-Schapira [1]) on the other hand.

Our result is the following

Theorem. Let M be a real analytic manifold, C the sheaf of microfunctions and \mathcal{E} the sheaf of micro-differential operators. Let \mathcal{M} be a holonomic system of micro-differential equations defined in a neighborhood of a point p of the pure imaginary cotangent bundle $\sqrt{-1}T^*M$. Then, the dimension of the vector space $\mathcal{E}_{xt_{\mathcal{E}}^j}(\mathcal{M}, \mathcal{C})_p$ is finite for any j.

We can prove this theorem in the following manner.

(I) Define a real hypersurface S in C^{n+1} by $\{(t, z) \in C^{n+1}; \text{Re } t = |z|^2\}$. Set $\Omega = \{(t, z) \in C^{n+1}; \text{Re } t > |z|^2\}$. We define C' by the inductive limit of $\mathcal{O}(U \cap \Omega)/\mathcal{O}(U)$, where U runs over a fundamental system of neighborhoods of (t, z) = (0, 0). Then we can find an isomorphism between $\mathcal{C}_{M,p}$ and $\mathcal{C}_{C^{n+1},(0,0;-dt)}$ and an isomorphism between $\mathcal{C}_{M,p}$ and \mathcal{C}' so that the action of $\mathcal{E}_{M,p}$ on $\mathcal{C}_{M,p}$ is compatible with that of $\mathcal{E}_{C^{n+1},(0,0;-dt)}$ on C'. (Kashiwara-Kawai [3] § 2.1.)

Further, we can choose these isomorphisms so that the characteristic variety Λ of the $\mathcal{E}_{C^{n+1},(0,0;-dt)}$ -module \mathcal{M}' corresponding to \mathcal{M} is finite over C^{n+1} , since the characteristic variety of \mathcal{M} is Lagrangian.

^{*)} Mathematical Institute, Nagoya University and Department of Mathematics, Harvard University. Supported by National Science Foundation.

^{**&#}x27; Research Institute for Mathematical Sciences, Kyoto University and Department of Mathematics, University of California, Berkeley. Supported by Miller Institute for Basic Research in Science.