93. Finiteness Theorem for Holonomic Systems of Micro-differential Equations

By Masaki Kashiwara*) and Takahiro Kawai**)
(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1976)

It is known that the solution space of a holonomic system (=maximally overdetermined system) of linear differential equations enjoys a nice finiteness property (Kashiwara [2]). This result naturally raises an interesting question whether analogous results hold for holonomic systems of micro-differential equations (=pseudo-differential equations.) Of course, we should talk about the microfunction solutions in this case and this makes the situations complicated.

However, we can overcome the difficulties by making use of a recent result on the boundary value problem for elliptic systems (KashiwaraKawai [4]) on one hand and the concrete representation of the action of micro-differential operators on microfunctions (Kashiwara-Kawai [3] and Bony-Schapira [1]) on the other hand.

Our result is the following
Theorem. Let M be a real analytic manifold, \mathcal{C} the sheaf of microfunctions and \mathcal{E} the sheaf of micro-differential operators. Let \mathscr{M} be a holonomic system of micro-differential equations defined in a neighborhood of a point p of the pure imaginary cotangent bundle $\sqrt{-1} T^{*} M$. Then, the dimension of the vector space $\mathcal{E x t}_{\mathcal{E}}^{j}(\mathcal{M}, \mathcal{C})_{p}$ is finite for any j.

We can prove this theorem in the following manner.
(I) Define a real hypersurface S in C^{n+1} by $\left\{(t, z) \in C^{n+1} ; \operatorname{Re} t=|z|^{2}\right\}$. Set $\Omega=\left\{(t, z) \in C^{n+1} ; \operatorname{Re} t>|z|^{2}\right\}$. We define \mathcal{C}^{\prime} by the inductive limit of $\mathcal{O}(U \cap \Omega) / \mathcal{O}(U)$, where U runs over a fundamental system of neighborhoods of $(t, z)=(0,0)$. Then we can find an isomorphism between $\mathcal{E}_{M, p}$ and $\mathcal{E}_{C^{n+1,(0,0 ;-d t)}}$ and an isomorphism between $\mathcal{C}_{M, p}$ and \mathcal{C}^{\prime} so that the action of $\mathcal{E}_{M, p}$ on $\mathcal{C}_{M, p}$ is compatible with that of $\mathcal{E}_{\mathcal{C}^{n+1,(0,0 ;-a t)}}$ on \mathcal{C}^{\prime}. (Kashiwara-Kawai [3] § 2.1.)

Further, we can choose these isomorphisms so that the characteristic variety Λ of the $\mathcal{E}_{C^{n+1,(0,0 ;-a t)}}$-module \mathscr{M}^{\prime} corresponding to \mathscr{M} is finite over C^{n+1}, since the characteristic variety of \mathscr{M} is Lagrangian.

[^0]
[^0]: *) Mathematical Institute, Nagoya University and Department of Mathematics, Harvard University. Supported by National Science Foundation.
 **) Research Institute for Mathematical Sciences, Kyoto University and Department of Mathematics, University of California, Berkeley. Supported by Miller Institute for Basic Research in Science.

