92. Random Functions in Fourier Restriction Algebras

By Toru Kawai
Faculty of Science, Kagoshima University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1976)

We denote by $A(R)$ the Fourier algebra on the real line R. The norm of \hat{h} in $A(R)$ is

$$
\|h\|_{1}=\frac{1}{2 \pi} \int_{\hat{R}}|h(r)| d r .
$$

For a closed subset E of R, set

$$
\begin{gathered}
A(E)=\{g \mid E: g \in A(R)\}, \\
\|f\|_{A(E)}=\inf \left\{\|g\|_{A(R)}: g \in A(R), g \mid E=f\right\} \quad(f \in A(E)) .
\end{gathered}
$$

Let $E_{k}=\left\{x_{m}^{(k)}: m_{k} \leqq m<m_{k}+n_{k}\right\}(k=1,2, \cdots)$ be pairwise disjoint finite subsets of R each of which consists of n_{k} points, where $m_{1}=0$ and $m_{k}+n_{1}=n_{2}+\cdots+n_{k-1}(k \geqq 2)$. Suppose $x_{0} \oplus \bigcup_{k=1}^{\infty} E_{k}$ and $\left\{E_{k}\right\}$ converges to x_{0}. Put

$$
E=\bigcup_{k=1}^{\infty} E_{k} \cup\left\{x_{0}\right\} .
$$

Let $\left\{c_{k}\right\}$ be a sequence of complex numbers and let $\left\{\varepsilon_{m}\right\}$ be the Rademacher sequence. We define a random function $f=f_{\omega}$ on E by

$$
\left\{\begin{array}{l}
f\left(x_{m}^{(k)}\right)=\varepsilon_{m}(\omega) c_{k} \quad\left(k=1,2, \cdots, m_{k} \leqq m<m_{k}+n_{k}\right) \\
f\left(x_{0}\right)=0 .
\end{array}\right.
$$

We investigate the condition for the function f to belong to $A(E)$. By using Rudin-Shapiro polynomials, we see that if each E_{k} is an arithmetic progression and $\left\{c_{k} \sqrt{n_{k}}\right\}$ does not converge to zero, then there exists a function $f \in A(E)$. The following Theorem asserts that it holds almost surely. This is based on the same idea as Paley-Zygmund theorem, but we use the estimate of the L^{1}-norm of random trigonometric polynomials which is due to Uchiyama.

Theorem. Suppose each E_{k} is an arithmetic progression. If $\left\{c_{k} \sqrt{n_{k}}\right\}$ does not converge to zero, then $f \oplus A(E)$ a.s.

Proof. Put

$$
x_{m}^{(k)}=a_{k}+m b_{k} \quad\left(k=1,2, \cdots, m_{k} \leqq m<m_{k}+n_{k}\right) .
$$

For each k, let v_{k} be the function in $L^{1}(\hat{R})$ such that

$$
\hat{v}_{k}(x)=\hat{K}_{\lambda}\left(x-\left\{a_{k}+\left(m_{k}+p_{k}\right) b_{k}\right\}\right) \quad(x \in R),
$$

where $p_{k}=\left[n_{k} / 2\right], \lambda=p_{k} b_{k}$ and

$$
\hat{K}_{\lambda}(y)=\max \left(1-\frac{|y|}{\lambda}, 0\right) \quad(y \in R) .
$$

If $h \in L^{1}(\hat{R})$ and $\hat{h}=f$ on E_{k}, then

