91. The Existence and Uniqueness of the Solution of Equations Describing Compressible Viscous Fluid Flow in a Domain

By Atusi TANI

Tokyo Institute of Technology

(Communicated by Kôsaku YOSIDA, M. J. A., Sept. 13, 1976)

1. Introduction. The compressible viscous isotropic Newtonian fluid motion is described as follows: (the summation convention is used)

(1.1)

$$\frac{D\rho}{Dt} = -\rho \frac{\partial v_k}{\partial x_k},$$
(1.2)

$$\frac{Dv_i}{Dt} = \frac{1}{\rho} \frac{\partial}{\partial x_i} \left(\mu' \frac{\partial v_k}{\partial x_k} \right) + \frac{1}{\rho} \frac{\partial}{\partial x_k} \left[\mu \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) \right] - \frac{1}{\rho} \frac{\partial p}{\partial x_i} + f_i \quad (i=1,2,3),$$

(1.3)
$$\frac{DS}{Dt} = \frac{1}{\rho\theta} \frac{\partial}{\partial x_k} \left(\kappa \frac{\partial\theta}{\partial x_k} \right) + \frac{\mu}{2\rho\theta} \left(\frac{\partial v_j}{\partial x_k} + \frac{\partial v_k}{\partial x_j} \right)^2 + \frac{\mu'}{\rho\theta} \left(\frac{\partial v_k}{\partial x_k} \right)^2,$$

(ρ , density; v, velocity; μ , coefficient of viscosity; μ' , second coefficient of viscosity; κ , coefficient of heat conduction; p, pressure; f, outer force; S, entropy; θ , absolute temperature; $D/Dt = \partial/\partial t + v_k \cdot \partial/\partial x_k$).

By the physical requirements, μ , μ' , κ , p and S are considered to be functions of ρ and θ such that

(1.4)
$$\mu' + \frac{2}{3}\mu \ge 0; \ \mu, \kappa, p, S_{\theta} > 0.$$

If S is smooth, then it follows from (1.1) and (1.3) that

(1.3')
$$\frac{\frac{D\theta}{Dt} = \frac{1}{\rho\theta S_{\theta}} \frac{\partial}{\partial x_{k}} \left(\kappa \frac{\partial\theta}{\partial x_{k}} \right) + \frac{\mu}{2\rho\theta S_{\theta}} \left(\frac{\partial v_{j}}{\partial x_{k}} + \frac{\partial v_{k}}{\partial x_{j}} \right)^{2}}{+ \frac{\mu'}{\rho\theta S_{\theta}} \left(\frac{\partial v_{k}}{\partial x_{k}} \right)^{2} + \frac{\rho S_{\rho}}{S_{\theta}} \frac{\partial v_{k}}{\partial x_{k}}}.$$

We shall consider a first initial-boundary value problem of (1.1), (1.2) and (1.3') with the initial-boundary conditions:

(1.5) $\begin{cases} v(x,0) = v_0(x), \ \theta(x,0) = \theta_0(x), \ \rho(x,0) = \rho_0(x) \\ v(x,t) = 0, \ \theta(x,t) = \theta_1(x,t) \\ ((x,t) \in \Gamma_T), \end{cases} \quad (x \in \Omega),$

(Ω is a bounded or unbounded domain in R^3 , whose boundary Γ belongs to $C^{2+\alpha}$ and satisfies Lyapunov conditions (cf. [4]); $\Gamma_T = \Gamma \times [0, T]$). We assume that the compatibility conditions hold and that in (1.5)

(1.6)
$$\begin{cases} v_0, \theta_0 \in H^{2+\alpha}(\Omega), \ \rho_0 \in H^{1+\alpha}(\Omega), \ 0 < \overline{\rho}_0 \le \rho_0 \le \overline{\rho}_0 < +\infty, \\ 0 < \overline{\theta}_0 \le \theta_0 \le \overline{\overline{\theta}}_0 < +\infty, \ \theta_1 \in H^{2+\alpha}(\Gamma_T), \ \mu, \mu', \kappa, \ p, S \in \mathcal{O}_{1\infty}^{2+L}(\mathcal{D}_{\rho,\theta}), \\ f \in B^{1+L}(\overline{Q}_T), \end{cases}$$