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Let o and b be arbitrary integers with >0 and 6=0. For any
real number >0 we denote by A(x; a, b) the number of those integers
an+b,0<n<2zx, which are squares of an integer. P. Erdos[1; Problem
16] has conjectured that to every ¢>>0 there corresponds a number x,
=2,(e) such that we have
(1) A(x; a,b)<ex for x> x,.

He also notes there that W. Rudin has conjectured the existence of an
absolute constant ¢>0 such that
(2) A@;a,)<cevz  for x=>1.

Recently, E. Szemerédi [3] has given a very short proof of (1) by
noticing that there are no four squares that form an arithmetic pro-
gression, which is a well-known observation due to L. Euler, and by
appealing to the result of his to the effect that every infinite sequence
of non-negative integers that has positive upper density contains an
arithmetic progression of four elements (cf. [2], and also [4]). How-
ever, the argument in [2] (and in [4] as well) is elementary but by no
means simple, nor straightforward.

1. We shall first give another simple and elementary proof of (1).
There is no loss in generality in assuming that a>b. Every non-
negative integer belongs to one and only one arithmetic progression of
the form an-+b (n=0), where a is fixed and 0=<b<a. Hence we have

:le(x; 0, D) =Wazta—11+1  (x>0)
where [t] denotes the greatest integer not exceeding the real number ¢;
this implies that
A@x;a,D)<vVax+a—1+1 (x>0)

for any @ and b with a>b>=0, since we always have A(x; a, b)=0.
This clearly proves (1).

We plainly have A(x; a, b)=0 (£ >0), if b is a quadratic non-residue
(mod a).

2. Now, given @ and b, we write (&, b) =d=¢€*f, a=da, and b=db,.
Here, (a, b) denotes the greatest common divisor of a and b, and ¢? is
the largest square factor of d, so that f is a squarefree integer. Our



