117. On the Number of Squares in an Arithmetic Progression

By Saburô Uchiyama

Department of Mathematics, Okayama University, Okayama, Japan

(Communicated by Kenjiro SHODA, M. J. A., Oct. 12, 1976)

Let a and b be arbitrary integers with a>0 and $b\ge 0$. For any real number x>0 we denote by A(x;a,b) the number of those integers an+b, $0\le n\le x$, which are squares of an integer. P. Erdös [1; Problem 16] has conjectured that to every $\varepsilon>0$ there corresponds a number $x_0=x_0(\varepsilon)$ such that we have

(1)
$$A(x; a, b) < \varepsilon x$$
 for $x > x_0$.

He also notes there that W. Rudin has conjectured the existence of an absolute constant c > 0 such that

(2)
$$A(x; a, b) < c\sqrt{x}$$
 for $x \ge 1$.

Recently, E. Szemerédi [3] has given a very short proof of (1) by noticing that there are no four squares that form an arithmetic progression, which is a well-known observation due to L. Euler, and by appealing to the result of his to the effect that every infinite sequence of non-negative integers that has positive upper density contains an arithmetic progression of four elements (cf. [2], and also [4]). However, the argument in [2] (and in [4] as well) is elementary but by no means simple, nor straightforward.

1. We shall first give another simple and elementary proof of (1). There is no loss in generality in assuming that a>b. Every nonnegative integer belongs to one and only one arithmetic progression of the form an+b ($n \ge 0$), where a is fixed and $0 \le b < a$. Hence we have

$$\sum_{b=0}^{a-1} A(x; a, b) = [\sqrt{ax + a - 1}] + 1 \qquad (x > 0)$$

where [t] denotes the greatest integer not exceeding the real number t; this implies that

$$A(x; a, b) \le \sqrt{ax + a - 1} + 1$$
 $(x > 0)$

for any a and b with $a > b \ge 0$, since we always have $A(x; a, b) \ge 0$. This clearly proves (1).

We plainly have A(x; a, b) = 0 (x > 0), if b is a quadratic non-residue (mod a).

2. Now, given a and b, we write $(a, b) = d = e^2 f$, $a = da_0$ and $b = db_0$. Here, (a, b) denotes the greatest common divisor of a and b, and e^2 is the largest square factor of d, so that f is a squarefree integer. Our