117. On the Number of Squares in an Arithmetic Progression

By Saburô Uchiyama
Department of Mathematics, Okayama University, Okayama, Japan

(Communicated by Kenjiro Shoda, M. J. A., Oct. 12, 1976)

Let a and b be arbitrary integers with $a>0$ and $b \geqq 0$. For any real number $x>0$ we denote by $A(x ; a, b)$ the number of those integers $a n+b, 0 \leqq n \leqq x$, which are squares of an integer. P. Erdös [1; Problem 16] has conjectured that to every $\varepsilon>0$ there corresponds a number x_{0} $=x_{0}(\varepsilon)$ such that we have
(1)

$$
A(x ; a, b)<\varepsilon x \quad \text { for } x>x_{0} .
$$

He also notes there that W. Rudin has conjectured the existence of an absolute constant $c>0$ such that

$$
\begin{equation*}
A(x ; a, b)<c \sqrt{x} \quad \text { for } x \geqq 1 . \tag{2}
\end{equation*}
$$

Recently, E. Szemerédi [3] has given a very short proof of (1) by noticing that there are no four squares that form an arithmetic progression, which is a well-known observation due to L. Euler, and by appealing to the result of his to the effect that every infinite sequence of non-negative integers that has positive upper density contains an arithmetic progression of four elements (cf. [2], and also [4]). However, the argument in [2] (and in [4] as well) is elementary but by no means simple, nor straightforward.

1. We shall first give another simple and elementary proof of (1). There is no loss in generality in assuming that $a>b$. Every nonnegative integer belongs to one and only one arithmetic progression of the form $a n+b(n \geqq 0)$, where a is fixed and $0 \leqq b<a$. Hence we have

$$
\sum_{b=0}^{a-1} A(x ; a, b)=[\sqrt{a x+a-1}]+1 \quad(x>0)
$$

where $[t]$ denotes the greatest integer not exceeding the real number t; this implies that

$$
A(x ; a, b) \leqq \sqrt{a x+a-1}+1 \quad(x>0)
$$

for any a and b with $a>b \geqq 0$, since we always have $A(x ; a, b) \geqq 0$. This clearly proves (1).

We plainly have $A(x ; a, b)=0(x>0)$, if b is a quadratic non-residue $(\bmod a)$.
2. Now, given a and b, we write $(a, b)=d=e^{2} f, a=d a_{0}$ and $b=d b_{0}$. Here, (a, b) denotes the greatest common divisor of a and b, and e^{2} is the largest square factor of d, so that f is a squarefree integer. Our

