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1. Introduction and notations.

The purpose of this note is to point out errors in a proof and a
theorem of Kim [3], and to give a corrected version of the theorem.
By a quasi-metric on a set X we mean a non-negative real valued
function p on X X X such that for %, vy, z ¢ X we have p(x, ¥)=0 if and
only if z=y and p(x, ¥) <p(x,2)+p(z,y). The set Bz, p,e)={y
e X: p(x,y)<e} is the p-ball centre z and radius e. The topology
induced on X by p has the family {B(x,p,¢): x e X, ¢>0} as a base.
If p is a quasi-metric on X, its conjugate quasi-metric g on X is given
by q(x, ¥)=p(y, x) for z,y ¢ X. Bitopological concepts which are not
defined are taken from Kelly [2].

2. A theorem and an example.

The following result is hinted at by Stoltenberg [6], and proved
explicitly in [4].

Theorem 1. Any quasi metric space whose conjugate quasi metric
topology is compact is metrizable.

Proof. Let T, be the topology induced on the set X by the quasi
metric p whose conjugate ¢ induces the compact topology 7, on X. Let
U be T, open, and ye U. Sinece (X, T,, T, is pairwise Hausdorff [2],
for each ¢ X—U there is a T, open set U, and a T, open set V, such
thatx e U,,yeV,and U,NV,=¢. Hence {U,: xe X—U}is a T, open
cover of X—U which is T, compact, and so there is a finite subcover

Uy -+, Uy, Let V=nN{V,,:i=1, ---,n}

It is now easy to prove that either of the metrics d, and d,, given

by

d\(x, y)= —;—{p(x, »+q(x,y)} and

d(x, y)=max {p(z,y), 9=, y)} forz,yelX,
induces the topology T, so that (X, T,) is metrizable.
The question now arises as to whether the compactness condition
of Theorem 1 can be relaxed.
Example 1. This is a modification of an example due to Balanzat

[1]. Let X be the set of positive integers and define the non negative
real valued function ¢ on X x X by



