116. A Note on Quasi Metric Spaces

By Ivan L. REILLY

University of Auckland, Auckland, New Zealand

(Communicated by Kenjiro SHODA, M. J. A., Oct. 12, 1976)

1. Introduction and notations.

The purpose of this note is to point out errors in a proof and a theorem of Kim [3], and to give a corrected version of the theorem. By a quasi-metric on a set X we mean a non-negative real valued function p on $X \times X$ such that for $x, y, z \in X$ we have p(x, y)=0 if and only if x = y and $p(x, y) \le p(x, z) + p(z, y)$. The set $B(x, p, \varepsilon) = \{y \in X : p(x, y) \le \varepsilon\}$ is the p-ball centre x and radius ε . The topology induced on X by p has the family $\{B(x, p, \varepsilon) : x \in X, \varepsilon > 0\}$ as a base. If p is a quasi-metric on X, its conjugate quasi-metric q on X is given by q(x, y) = p(y, x) for $x, y \in X$. Bitopological concepts which are not defined are taken from Kelly [2].

2. A theorem and an example.

The following result is hinted at by Stoltenberg [6], and proved explicitly in [4].

Theorem 1. Any quasi metric space whose conjugate quasi metric topology is compact is metrizable.

Proof. Let T_1 be the topology induced on the set X by the quasi metric p whose conjugate q induces the compact topology T_2 on X. Let U be T_2 open, and $y \in U$. Since (X, T_1, T_2) is pairwise Hausdorff [2], for each $x \in X - U$ there is a T_2 open set U_x and a T_1 open set V_x such that $x \in U_x$, $y \in V_x$ and $U_x \cap V_x = \phi$. Hence $\{U_x : x \in X - U\}$ is a T_2 open cover of X - U which is T_2 compact, and so there is a finite subcover

 U_{x_1}, \dots, U_{x_n} . Let $V = \cap \{V_{x_i} : i = 1, \dots, n\}$

It is now easy to prove that either of the metrics d_1 and d_2 , given by

$$d_1(x, y) = \frac{1}{2} \{ p(x, y) + q(x, y) \}$$
 and

 $d_2(x, y) = \max \{ p(x, y), q(x, y) \}$ for $x, y \in X$, induces the topology T_1 , so that (X, T_1) is metrizable.

The question now arises as to whether the compactness condition of Theorem 1 can be relaxed.

Example 1. This is a modification of an example due to Balanzat [1]. Let X be the set of positive integers and define the non negative real valued function q on $X \times X$ by