115. A Note on the Classification of Stability

By Sadahisa SAKATA Osaka University

(Communicated by Kenjiro SHODA, M. J. A., Oct. 12, 1976)

1. Introduction. We shall consider the system of ordinary differential equations $\dot{x} = f(t, x)$. Let R^n denote Euclidean space of dimension n. We shall assume that f is continuous on $[0, \infty) \times R^n$ and satisfies the equality f(t, 0) = 0 for $t \ge 0$. In this note we discuss various types of stability, that is, (simple) stability (abbreviated by S), uniform stability (US), quasi-asymptotic stability (in the large) (QAS(L)), stability (in the large) (AS(L)), quasi-equi-asymptotic stability (in the large) (QEAS(L)), equi-asymptotic stability (in the large) (EAS(L)), quasiuniform-asymptotic stability (in the large) (QUAS(L)), uniform-asymptotic stability (in the large) (UAS(L)), and exponential-asymptotic stability (in the large) (Exp AS(L)) introduced by Lyapunov, Massera and many others. For the definitions of the above notions we shall employ those in Yoshizawa [4].

Our purpose is to clarify the relations between these notions. This note is based on a portion of a dissertation of the author's Master degree in 1975 submitted to Osaka University.

We now define F(S) as the family of continuous functions f for which the trivial solutions x(t)=0 of $\dot{x}=f(t,x)$ are stable. Of course, in a way similar to the above notation we also define F(US), F(QAS), \cdots , $F(Exp \ ASL)$ respectively. It is convenient to define

 $F_{Lin}(*) = \{ f \in F(*) | f(t, x) = A(t)x \},\$

 $F_{Aut}(*) = \{f \in F(*) \mid f \text{ is independent of } t\}$

and $F_{Per}(*) = \{f \in F(*) \mid f(t+\omega, x) = f(t, x) \text{ for some } \omega \ge 0\}.$

The author wishes to express his thanks to Professor M. Yamamoto of Osaka University for his kind advice and constant encouragement.

2. Well-known Relations. First we begin to give the propositions, immediate consequences of the definitions.

Proposition 1. $F(US) \subset F(S)$.

Proposition 2. (i) $F(QUAS) \subset F(QEAS) \subset F(QAS)$, (ii) $F(Exp AS) \subset F(UAS) \subset F(EAS) \subset F(AS)$.

Proposition 3. (i) $F(QUASL) \subset F(QEASL) \subset F(QASL)$,

(ii) $F(Exp \ ASL) \subset F(UASL) \subset F(EASL) \subset F(ASL)$.

Proposition 4. (i) $F(Exp ASL) \subset F(Exp AS)$,

(ii) $F(QUASL) \subset F(QUAS)$ hence $F(UASL) \subset F(UAS)$,

(iii) $F(QEASL) \subset F(QEAS)$ hence $F(EASL) \subset F(EAS)$,