114. On Holomorphically induced Representations of Exponential Groups

By Hidenori FUJIWARA

(Communicated by Kôsaku YOSIDA, M. J. A., Oct. 12, 1976)

The aim of this note is to generalize to the case of exponential groups the results announced in [2] on holomorphically induced representations of split solvable Lie groups.

1. Let $G = \exp \mathfrak{g}$ be an exponential group (for the definition, see [6] for example) with Lie algebra \mathfrak{g} , f a linear form on \mathfrak{g} , \mathfrak{h} a positive polarization of \mathfrak{g} at f, $\rho(f, \mathfrak{h})$ the holomorphically induced representation of G constructed from \mathfrak{h} and let $\mathcal{H}(f, \mathfrak{h})$ be the space of $\rho(f, \mathfrak{h})$ [1].

In this note, we find a necessary and sufficient condition on (f, \mathfrak{h}) for the non-vanishing of $\mathcal{H}(f, \mathfrak{h})$. We then show that $\rho(f, \mathfrak{h})$ $(\neq 0)$ is irreducible if and only if the Pukanszky condition is satisfied, and that in this case $\rho(f, \mathfrak{h})$ is independent of \mathfrak{h} . For reducible $\rho(f, \mathfrak{h})$, we describe its decomposition into irreducible components.

The details will appear elsewhere.

2. The triple (\mathfrak{k}, j, ρ) consisting of an exponential Lie algebra \mathfrak{k} , a linear operator j and an alternating bilinear form ρ on \mathfrak{k} is called an exponential Kähler algebra if it has the following properties:

- a) $j^2 = -1$, b) [jX, jY] = j[jX, Y] + j[X, jY] + [X, Y],
- c) $\rho(jX, jY) = \rho(X, Y)$, d) $\rho(jX, X) > 0$ for $X \neq 0$,
- e) $\rho([X, Y], Z) + \rho([Y, Z], X) + \rho([Z, X], Y) = 0.$

If, in addition to these properties, there is an linear form ω on \mathfrak{k} such that $\rho(X, Y) = \omega([X, Y])$ for any $X, Y \in \mathfrak{k}$, the triple $(\mathfrak{k}, j, \omega)$ is called an exponential *j*-algebra. By abuse of language we often call the exponential Lie algebra \mathfrak{k} an exponential Kähler algebra or an exponential *j*-algebra.

We generalize the structure theorem of a normal *j*-algebra [4] (resp. a normal Kähler algebra [3]) to an exponential *j*-algebra (resp. an exponential Kähler algebra).

Theorem 1. Let $(\mathfrak{k}, j, \omega)$ be an exponential j-algebra. We define an inner product S on \mathfrak{k} by $S(X, Y) = \omega([jX, Y])$ for X, $Y \in \mathfrak{k}$. Let \mathfrak{a} be the orthogonal complement of $\eta = [\mathfrak{k}, \mathfrak{k}]$ with respect to the form S. \mathfrak{a} is a commutative subalgebra of $\mathfrak{k}, \mathfrak{k} = \mathfrak{a} + \eta$, and the adjoint representation of \mathfrak{a} on η is complex diagonarizable. For $\alpha \in \mathfrak{a}^*$, we set $\eta^{\alpha} = \{X \in \eta; [A, X] = \alpha(A)X$ for all $A \in \mathfrak{a}\}$ and let $\{\eta^{\alpha_i}\}, 1 \leq i \leq r$ be those root spaces η^{α} for which $j(\eta^{\alpha}) \subset \mathfrak{a}$. Then dim $\eta^{\alpha_i} = 1$ and $r = \dim \mathfrak{a}$ (r is called