113. Degenerate Elliptic Systems of Pseudodifferential Equations

By Hideo SOGA Department of Mathematics, Osaka University (Communicated by Kôsaku YOSIDA, M. J. A., Oct. 12, 1976)

Introduction. Let M be a compact C^{∞} manifold and $A = (a_{ij})_{i,j=1,...,m}$ be a matrix of pseudodifferential operators on M whose symbols, represented by local coordinates, have homogeneous asymptotic expansions (cf. Seeley [4]). Let us consider the equation Au = f on M when A is elliptic outside a C^{∞} submanifold M_0 and degenerate on M_0 . In the present paper we shall study the normal solvability and the subelliptic estimates for a class of equations such that det A_0 (A_0 is the principal symbol of A) has multi-characteristics, while Èskin in [1] has investigated these problems in the case where det A_0 is of principal type. Finally we shall give an example as an application to non-coercive boundary value problems of fourth order.

1. Assumptions and the main theorem. Let the order of a_{ij} be $s_i + t_j$ $(s_i, t_j \in \mathbf{R})$, then A is a continuous operator from $\prod_{j=1}^{m} H_{s+t_j}(M)$ to $\prod_{i=1}^{m} H_{s-s_i}(M)$ $(H_s(M)$ denotes the Sobolev space on M of order s). Let M $(n = \dim M \ge 2)$ be separated into two connected components by a C^{∞} submanifold M_0 . We assume that the ellipticity of A is degenerate on M_0 in the following way.

Let $\{x^i = (x_0^i, \dots, x_{n-1}^i)\}_{i=1,\dots,N}$ be a set of local coordinates covering a neighborhood of M_0 and expressing M_0 by the equation $x_0^i = 0$, and the transition from x^i to x^j in the domain where both x^i and x^j are defined be given by the form $x_0^j = x_0^i$, $x_k^j = \varphi_k^j(x_1^i, \dots, x_{n-1}^i)$, $(k=1, \dots, n-1)$. When A is locally represented in $x^i = (t, y) = (t, y_1, \dots, y_{n-1})$ $(i=1, \dots, N)$, its principal symbol $A_0(t, y; \tau, \eta)$ satisfies the assumptions (I) \sim (IV):

- (I) det $A_0(t, y; \tau, \eta) \neq 0$ when $t \neq 0$ & $|\tau| + |\eta| \neq 0$ or t = 0 & $\tau \neq 0$;
- (II) $A_0(0, y; 0, \eta) = [0]$ (zero-matrix);
- (III) det $\partial A_0/\partial \tau(0, y; 0, \eta) \neq 0$, $|\eta| \neq 0$;

(IV) Set $\tilde{A}_0(t, y; \eta') = \partial A_0/\partial \tau(t, y; 0, \eta')^{-1} \cdot A_0(t, y; 0, \eta')(\eta' = \eta/|\eta|)$. There exist positive integers k_1, \dots, k_l such that the following decomposition of \tilde{A}_0 is possible: $t^{-k_1}\tilde{A}_0(t, y; \eta')$ is smooth on t=0 and has simple eigenvalues $\lambda_1^1(t, y; \eta'), \dots, \lambda_{m_1}^1(t, y; \eta')$ with non-vanishing imaginary parts. Other eigenvalues all vanish as $t \to 0$. Let $P_j^1(t, y; \eta')$ be the projection $(2\pi i)^{-1} \oint (\lambda - t^{-k_1}\tilde{A}_0)^{-1}d\lambda$ for the eigenvalue $\lambda_j^1(t, y; \eta')$. Next for $t^{-k_2-k_1}\tilde{A}_0(I - \sum_{j=1}^{m_1} P_j^1)$ the same statements hold. We can