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Introduction. Let M be a compact C~ manifold and A
=(Wsy)s,5=1,...,m D€ & matrix of pseudodifferential operators on M whose
symbols, represented by local coordinates, have homogeneous asymp-
totic expansions (cf. Seeley [4]). Let us consider the equation Au=f
on M when A is elliptic outside a C* submanifold M, and degenerate
on M,. Inthe present paper we shall study the normal solvability and
the subelliptic estimates for a class of equations such that det 4, (4,
is the principal symbol of A) has multi-characteristics, while ¥skin in
[1] has investigated these problems in the case where det 4, is of
principal type. Finally we shall give an example as an application to
non-coercive boundary value problems of fourth order.

1. Assumptions and the main theorem. Let the order of a;; be
8;+1t;(s;t;€ R), then A is a continuous operator from [[7., H,, (M)
to [y H,_,, (M) (H(M) denotes the Sobolev space on M of order s).
Let M (n=dim M =2) be separated into two connected components by
a C~ submanifold M,, Weassume that the ellipticity of A is degenerate
on M, in the following way.

Let {xt=(x}, - -+, 2%_D}iy,...,y be a set of local coordinates covering
a neighborhood of M, and expressing M, by the equation z{=0, and the
transition from z? to 2’ in the domain where both «* and 2’ are defined
be given by the form z{=uxi, vi=¢l@s, ---, 2, ), (k=1, .., n—-1).
When A is locally represented in x'=(, )=, ¥, - - > Yn_y) @=1, ---,
N), its principal symbol A(t, ¥ ; 7, 5) satisfies the assumptions (I) ~(IV):

(I) detAyt,y;7,7)x0when tx0 & |]|+|y|x0 or =0 & zx0;

(II) A\0,¥;0,7)=[0] (zero-matrix);

(III) det 6A~0/5f(0, Y5 0,70, |7|x0;

(AV) Set Ayt,u; 1) =04:/3c(t, u; 0,7)7 - Ayt 45 0, 7)) = 7/[7).
There exist positive integers k,, - - -, k; such that the following decom-
position of A, is possible: t-*A (¢, y; 7’) is smooth on ¢t=0 and has
simple eigenvalues Ai(¢, v ; 1), - - -, 24,(&, ¥ ; ") with non-vanishing imagi-
nary parts. Other eigenvalues all vanish as £—0. Let Pi(¢,¥y; 7)) be

the projection (2z%)7! § (Z—t‘klﬁo)‘ldz for the eigenvalue 2j(t,¥; 7).
Next for t-* A (I—>™, P!) the same statements hold. We can



