113. Degenerate Elliptic Systems of Pseudodifferential Equations

By Hideo Soga
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1976)

Introduction. Let M be a compact C^{∞} manifold and A $=\left(a_{i j}\right)_{i, j=1, \ldots, m}$ be a matrix of pseudodifferential operators on M whose symbols, represented by local coordinates, have homogeneous asymptotic expansions (cf. Seeley [4]). Let us consider the equation $A u=f$ on M when A is elliptic outside a C^{∞} submanifold M_{0} and degenerate on M_{0}. In the present paper we shall study the normal solvability and the subelliptic estimates for a class of equations such that $\operatorname{det} A_{0}\left(A_{0}\right.$ is the principal symbol of A) has multi-characteristics, while E'skin in [1] has investigated these problems in the case where $\operatorname{det} A_{0}$ is of principal type. Finally we shall give an example as an application to non-coercive boundary value problems of fourth order.

1. Assumptions and the main theorem. Let the order of $\alpha_{i j}$ be $s_{i}+t_{j}\left(s_{i}, t_{j} \in \boldsymbol{R}\right)$, then A is a continuous operator from $\prod_{j=1}^{m} H_{s+t_{j}}(M)$ to $\prod_{i=1}^{m} H_{s-s_{i}}(M)\left(H_{s}(M)\right.$ denotes the Sobolev space on M of order $\left.s\right)$. Let M ($n=\operatorname{dim} M \geqq 2$) be separated into two connected components by a C^{∞} submanifold M_{0}. We assume that the ellipticity of A is degenerate on M_{0} in the following way.

Let $\left\{x^{i}=\left(x_{0}^{i}, \cdots, x_{n-1}^{i}\right)\right\}_{i=1, \ldots, N}$ be a set of local coordinates covering a neighborhood of M_{0} and expressing M_{0} by the equation $x_{0}^{i}=0$, and the transition from x^{i} to x^{j} in the domain where both x^{i} and x^{j} are defined be given by the form $x_{0}^{j}=x_{0}^{i}, x_{k}^{j}=\varphi_{k}^{j}\left(x_{1}^{i}, \cdots, x_{n-1}^{i}\right),(k=1, \cdots, n-1)$. When A is locally represented in $x^{i}=(t, y)=\left(t, y_{1}, \cdots, y_{n-1}\right)(i=1, \cdots$, N), its principal symbol $A_{0}(t, y ; \tau, \eta)$ satisfies the assumptions (I) $\sim(I V):$
(I) $\operatorname{det} A_{0}(t, y ; \tau, \eta) \neq 0$ when $t \neq 0 \&|\tau|+|\eta| \neq 0$ or $t=0 \& \tau \neq 0$;
(II) $A_{0}(0, y ; 0, \eta)=[0]$ (zero-matrix);
(III) $\operatorname{det} \partial A_{0} / \partial \tau(0, y ; 0, \eta) \neq 0,|\eta| \neq 0$;
(IV) Set $\tilde{A}_{0}\left(t, y ; \eta^{\prime}\right)=\partial A_{0} / \partial \tau\left(t, y ; 0, \eta^{\prime}\right)^{-1} \cdot A_{0}\left(t, y ; 0, \eta^{\prime}\right)\left(\eta^{\prime}=\eta /|\eta|\right)$. There exist positive integers k_{1}, \cdots, k_{l} such that the following decomposition of \tilde{A}_{0} is possible: $t^{-k_{1}} \tilde{A}_{0}\left(t, y ; \eta^{\prime}\right)$ is smooth on $t=0$ and has simple eigenvalues $\lambda_{1}^{1}\left(t, y ; \eta^{\prime}\right), \cdots, \lambda_{m_{1}}^{1}\left(t, y ; \eta^{\prime}\right)$ with non-vanishing imaginary parts. Other eigenvalues all vanish as $t \rightarrow 0$. Let $P_{j}^{1}\left(t, y ; \eta^{\prime}\right)$ be the projection $(2 \pi i)^{-1} \oint\left(\lambda-t^{-k_{1}} \tilde{A}_{0}\right)^{-1} d \lambda$ for the eigenvalue $\lambda_{j}^{1}\left(t, y ; \eta^{\prime}\right)$. Next for $t^{-k_{2}-k_{1}} \tilde{A}_{0}\left(I-\sum_{j=1}^{m_{1}} P_{j}^{1}\right)$ the same statements hold. We can

