133. A Characterization of L^{2}-well Posedness for Iterations of Hyperbolic Mixed Problems of Second Order

By Kôji Kubota
Department of Mathematics, Hokkaido University

(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1976)
§ 1. Introduction and theorem. We are concerned with an iterated mixed problem as follows:

$$
\left(\tilde{P}, \tilde{B}_{1}, \cdots, \tilde{B}_{m}\right) \begin{cases}\tilde{P}(x, D) u=f & \text { in } \Omega \\ \tilde{B}_{j}\left(x^{\prime}, D\right) u=g_{j} & \text { on } \Gamma, j=1, \cdots, m\end{cases}
$$

Here Ω and Γ are the open half space $\left\{x=\left(x^{\prime}, x_{n}\right)=\left(x_{0}, x^{\prime \prime}, x_{n}\right) ; x_{0} \in R^{1}\right.$, $\left.x^{\prime \prime} \in R^{n-1}, x_{n}>0\right\}(n \geqq 2)$ and its boundary respectively, and for covariable (τ, σ, λ) of ($x_{0}, x^{\prime \prime}, x_{n}$) the principal symbols $\tilde{P}^{0}(x, \tau, \sigma, \lambda), \tilde{B}_{j}^{0}\left(x^{\prime}, \tau, \sigma, \lambda\right)$ of \tilde{P}, \tilde{B}_{j} have the following forms:
$\tilde{P}^{0}=P_{1}^{0} \cdots P_{m}^{0}, \tilde{B}_{1}^{0}=B_{1}^{0}, \tilde{B}_{2}^{0}=B_{2}^{0} P_{1}^{0}, \tilde{B}_{3}^{0}=B_{3}^{0} P_{2}^{0} P_{1}^{0}, \cdots, \tilde{B}_{m}^{0}=B_{m}^{0} P_{m-1}^{0} \cdots P_{1}^{0}$, where $P_{j}^{0}, j=1, \cdots, m$ are x_{0}-hyperbolic homogeneous operators of second order whose normal cones cut by $\tau=1$ don't intersect each other and are bounded surfaces in the (σ, λ) space for every fixed $x \in \Gamma$. Furthermore B_{j}^{0} is a homogeneous boundary differential operator at most of first order such that Γ is noncharacteristic for B_{j}^{0}. All the coefficients are assumed to be real and smooth in $\bar{\Omega}$ and to be constant near the infinity (see [2], [3], [8]).

Definition. The problem $\left(\tilde{P}, \tilde{B}_{1}, \cdots, \tilde{B}_{m}\right)$ is said to be L^{2}-well posed if and only if there exist positive constants C and γ_{0} such that for every $\gamma \geqq \gamma_{0}$ and $f \in H_{1, r}(\Omega)$ the problem $\left(\tilde{P}, \tilde{B}_{1}, \cdots, \tilde{B}_{m}\right)$ with $g_{j}=0, j=1, \cdots$, m has a unique solution u in $H_{2 m, r}(\Omega)$ satisfying

$$
\begin{equation*}
r\|u\|_{2 m-1, r} \leqq C\|f\|_{0, r} . \tag{1.1}
\end{equation*}
$$

(For function spaces see, e.g., [7]).
Now we have
Theorem. The problem $\left(\tilde{P}, \tilde{B}_{1}, \cdots, \tilde{B}_{m}\right)$ is L^{2}-well posed if and only if all the frozen constant coefficients problems $\left(\tilde{P}^{0}, \tilde{B}_{1}^{0}, \cdots, \tilde{B}_{m}^{0}\right)_{x^{\prime}}$ at boundary points $x^{\prime} \in \Gamma$ are "uniformly L^{2}-well posed", that is, ($\tilde{P}^{0}, \tilde{B}_{1}^{0}$, $\left.\ldots, \tilde{B}_{m}^{0}\right)_{x^{\prime}}$ is L^{2}-well posed for every $x^{\prime} \in \Gamma$ and the constants C in (1.1) with respect to these problems are independent of the parameter x^{\prime}.
§ 2. Outline of the proof. It is enough to prove the "if" part, because of Theorem 1 and Lemma 2.2 in [1]. Let $\tilde{L}\left(x^{\prime}, \tau, \sigma\right)$ and $L_{j}\left(x^{\prime}\right.$, $\tau, \sigma), j=1, \cdots, m$ be the Lopatinskii determinants of $\left(\tilde{P}^{0}, \tilde{B}_{1}^{0}, \cdots, \tilde{B}_{m}^{0}\right)$ and (P_{j}^{0}, B_{j}^{0}) respectively. Then it follows from (3.2) and Theorem 1 in [2] respectively that

$$
\begin{equation*}
\tilde{L}=L_{1} \cdots L_{m} \cdot(\text { nonzero factor }) \tag{2.1}
\end{equation*}
$$

