130. Factorizations and Fundamental Solutions for Differential Operators of Elliptic. Hyperbolic Type

By Hitoshi Kumano-go
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1976)

§ 0. Introduction. In this note we shall study an operator of the form

$$
\begin{equation*}
L=D_{t}^{m}+A_{1}(t) D_{t}^{m-1}+\cdots+A_{m}(t) \quad \text { on }[0, T] \times R^{n} \tag{0.1}
\end{equation*}
$$

$(m \geqq 1,0<T<\infty)$, where $A_{j}(t)=a_{j}\left(t, X, D_{x}\right) \in \mathscr{B}_{t}\left(\$^{j}\right)$ on $[0, T](j=1, \cdots$, m) (For notations see, for example, Kumano-go [5]). We define the symbol $\sigma(L)=l(t, x, \lambda, \xi)$ for L by

$$
\begin{equation*}
l=\lambda^{m}+a_{1}(t, x, \xi) \lambda^{m-1}+\cdots+a_{m}(t, x, \xi) . \tag{0.2}
\end{equation*}
$$

We call a symbol $l^{\prime}=\lambda^{m}+b_{1} \lambda^{m-1}+\cdots+b_{m}\left(b_{j} \in \mathscr{B}_{t}\left(S^{j}\right)\right.$ on $\left.[0, T]\right)$ the principal symbol (or part) of L (or l), when we can write $l-l^{\prime}=\sum_{j=1}^{m} r_{j} \lambda^{m-j}$ for $r_{j} \in \mathscr{B}_{t}\left(S^{j-1}\right)$ on $[0, T], j=1, \cdots, m$.

The starting point of the present note is the following factorization theorem, which can be proved by using Sylvester's determinant.

Theorem 0. If the roots $\left\{\tau_{j}(t, x, \xi)\right\}_{j=1}^{m}$ of $l=0$ are separated into two groups $\left\{\tau_{1 k}\right\}_{k=1}^{m_{1}}$ and $\left\{\tau_{2 k}\right\}_{k=1}^{m_{2}}\left(m=m_{1}+m_{2}\right)$ so that $\left|\tau_{1 k}-\tau_{2 k^{\prime}}\right| \geqq C|\xi|(|\xi|$ $\geqq M)$ for any $k, k^{\prime}(C>0, M>0)$, then L is factorized into the form

$$
\begin{equation*}
L=L_{1} L_{2}+\sum_{j=1}^{m} R_{j}^{(-\infty)} D_{t}^{m-j} \quad \text { on }[0, T] \times R^{n} \tag{0.3}
\end{equation*}
$$

(which is denoted by $L \equiv L_{1} L_{2}$ on $[0, T]$), where $R_{j}^{(-\infty)} \in \mathcal{B}_{t}\left(\$^{-\infty}\right)$, and L_{j} $(j=1,2)$ are operators of order m_{j} such that the principal symbols of L_{j} are $\prod_{k=1}^{m J_{1}}\left(\lambda-\tau_{j k}(t, x, \xi)\right)$.

In $\S 1$ we shall discuss the Levi condition for L, and construct the fundamental solution $E(t, s)$, which is represented by Fourier integral operators, when L has the form $L \equiv L^{(+)} L^{(0)}$ (see Theorem 1.3). Then, the Cauchy problem for L can be solved in the spaces H_{s}, \mathcal{B}, etc., and the wave front set of the solution can be described through phase functions. Our results are regarded in some sense as global versions of those, obtained by Lax-Nirenberg [8] and Chazarain [1], [2], to R^{n}. We note also that our results can be easily (micro-) localized by considering $a E b$ for appropriate $a, b \in \mathcal{B}_{t}\left(\$^{0}\right)$ and applying the asymptotic formula for $\sigma(a E b)$ given in [5], which states the canonical relation between a and b.
§ 1. Main theorems. In what follows we assume that the principal part l^{\prime} of l has the form $l^{\prime}=l^{(-)} l^{(+)} l^{(0)}$ where the roots $\left\{\tau_{j}^{(\pm)}\right\}_{j=1}^{m \pm}$ of $l^{(\pm)}=0$

