130. Factorizations and Fundamental Solutions for Differential Operators of Elliptic-Hyperbolic Type

By Hitoshi KUMANO-GO
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1976)

§ 0. Introduction. In this note we shall study an operator of the form

(0.1)
$$L=D_t^m+A_1(t)D_t^{m-1}+\cdots+A_m(t)$$
 on $[0,T]\times R^n$ $(m\geq 1,0< T<\infty)$, where $A_j(t)=a_j(t,X,D_x)\in \mathcal{B}_t(\mathcal{S}^j)$ on $[0,T]$ $(j=1,\cdots,m)$ (For notations see, for example, Kumano-go [5]). We define the symbol $\sigma(L)=l(t,x,\lambda,\xi)$ for L by

$$(0.2) l=\lambda^m+a_1(t,x,\xi)\lambda^{m-1}+\cdots+a_m(t,x,\xi).$$

We call a symbol $l' = \lambda^m + b_1 \lambda^{m-1} + \cdots + b_m$ $(b_j \in \mathcal{B}_l(S^j))$ on [0, T] the principal symbol (or part) of L (or l), when we can write $l - l' = \sum_{j=1}^m r_j \lambda^{m-j}$ for $r_j \in \mathcal{B}_l(S^{j-1})$ on [0, T], $j = 1, \dots, m$.

The starting point of the present note is the following factorization theorem, which can be proved by using Sylvester's determinant.

Theorem 0. If the roots $\{\tau_j(t,x,\xi)\}_{j=1}^m$ of l=0 are separated into two groups $\{\tau_{1k}\}_{k=1}^{m_1}$ and $\{\tau_{2k}\}_{k=1}^{m_2}$ $(m=m_1+m_2)$ so that $|\tau_{1k}-\tau_{2k'}| \ge C |\xi|$ ($|\xi| \ge M$) for any k,k' (C>0,M>0), then L is factorized into the form

(0.3)
$$L = L_1 L_2 + \sum_{i=1}^{m} R_j^{(-\infty)} D_i^{m-j} \quad on [0, T] \times \mathbb{R}^n$$

(which is denoted by $L \equiv L_1 L_2$ on [0, T]), where $R_j^{(-\infty)} \in \mathcal{B}_t(\$^{-\infty})$, and L_j (j=1,2) are operators of order m_j such that the principal symbols of L_j are $\prod_{k=1}^{m_j} (\lambda - \tau_{jk}(t, x, \xi))$.

In § 1 we shall discuss the Levi condition for L, and construct the fundamental solution E(t,s), which is represented by Fourier integral operators, when L has the form $L \equiv L^{(+)}L^{(0)}$ (see Theorem 1.3). Then, the Cauchy problem for L can be solved in the spaces H_s , \mathcal{B} , etc., and the wave front set of the solution can be described through phase functions. Our results are regarded in some sense as global versions of those, obtained by Lax-Nirenberg [8] and Chazarain [1], [2], to R^n . We note also that our results can be easily (micro-) localized by considering aEb for appropriate $a, b \in \mathcal{B}_t(\$^0)$ and applying the asymptotic formula for $\sigma(aEb)$ given in [5], which states the canonical relation between a and b.

§ 1. Main theorems. In what follows we assume that the principal part l' of l has the form $l'=l^{(-)}l^{(+)}l^{(0)}$ where the roots $\{\tau_j^{(\pm)}\}_{j=1}^{m^{\pm}}$ of $l^{(\pm)}=0$