150. On the Jordan-Hölder Theorem

By Zensiro GOSEKI Gunma University

(Communicated by Kenjiro SHODA, M. J. A., Dec. 13, 1976)

Let $\{A_n, f_n\}$ be a family of groups A_n and homomorphisms $f_n: A_n \to A_{n-1}$, defined for all $n \in \mathbb{Z}$ $(\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\})$. If a sequence

 $\cdots \longrightarrow A_{n+1} \xrightarrow{f_{n+1}} A_n \xrightarrow{f_n} A_{n-1} \xrightarrow{f_{n-1}} \cdots$

is exact, then we denote it by $(A_n: f_n)$ and we say $(A_n: f_n)$ to be well defined. Generalizations of Isomorphism Theorem and the Jordan-Hölder Theorem in group theory have been given in some papers (for example, [2] and [3]). The purpose of this note is also to give those theorems for a sequence $(A_n: f_n)$.

1. Isomorphism Theorem. In this section, let $(A_n:f_n)$ and $(B_n:g_n)$ be well defined. A translation $\{\alpha_n\}$ of $(A_n:f_n)$ into $(B_n:g_n)$ is the set of homomorphisms $\alpha_n:A_n \rightarrow B_n$ such that $\alpha_{n-1}f_n = g_n\alpha_n$ for all $n \in \mathbb{Z}$. Moreover, if each α_n is an isomorphism, we say that $(A_n:f_n)$ is *isomorphic* to $(B_n:g_n)$. If for each $n \in \mathbb{Z}$, B_n is a subgroup of A_n , i.e., $A_n \geqslant B_n$, and $f_n = g_n$ on B_n , then we denote $(B_n:g_n)$ by $(B_n:f_n)$. In this case, we call $(B_n:f_n)$ a subsequence of $(A_n:f_n)$ and write it in the notation: $(A_n:f_n) \geqslant (B_n:f_n)$. Moreover, if $A_n \triangleright B_n$ for all $n \in \mathbb{Z}$, we call $(B_n:f_n) = n$ normal subsequence of $(A_n:f_n)$ and write it in the notation: $(A_n:f_n) \triangleright (B_n:f_n)$.

It is easy to prove the following

Lemma 1. Let $(A_n; f_n)$ be well defined. For each $n \in \mathbb{Z}$, let M_n be a subgroup of A_n . Then $(M_n; f_n)$ is well defined iff $f_n(M_n) = f_n(A_n) \cap M_{n-1}$ for all $n \in \mathbb{Z}$.

By Lemma 1 and the same way as in proofs of [1, Lemma 2] and [1, Lemma 3], we can prove the following

Lemma 2. Let $(A_n:f_n) \ge (P_n:f_n)$. For each $n \in \mathbb{Z}$, let $A_n \ge M_n$ $\triangleright P_n$. Then $(M_n:f_n)$ is well defined iff $(M_n/P_n:\overline{f_n})$ is well defined where each $\overline{f_n}$ is a mapping which is naturally induced by f_n .

Theorem 1. Let $\{\alpha_n\}: (A_n:f_n) \rightarrow (B_n:g_n)$ be a translation. Then $(\alpha_n(A_n):g_n)$ is well defined iff (Ker $(\alpha_n):f_n$) is well defined. In this case, $(A_n/\text{Ker } (\alpha_n):\bar{f_n})$ is also well defined and isomorphic to $(\alpha_n(A_n):g_n)$, where for each $n \in \mathbb{Z}$, $\bar{f_n}$ is a mapping which is naturally induced by f_n .

Proof. The first assertion follows from routine arguments and the remainder follows from Lemma 2.