149. On a Pair of Groups and its Sylow Bases

By Zensiro Goseki
Gunma University
(Communicated by Kenjiro Shoda, M. J. A., Dec. 13, 1976)

Only finite groups are to be considered in this note. Any unexplained notation and terminology should be referred to [1] and [2]. Throughout this note, let A and B be groups such that a pair ($A, B: f, g$) of groups is well defined, where $f: A \rightarrow B$ and $g: B \rightarrow A$ are homomorphisms and let $|A|=|B|=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$, where the p 's are different primes and each e_{i} is a positive integer. Suppose A is solvable. Then B is also solvable. In this case, we shall call $(A, B: f, g)$ solvable. By P. Hall ([3]), the classical theorems about Sylow subgroups have been extended to the Sylow systems of a solvable group. With respect to ($A, B: f, g$) which is solvable, we will give the following which are analogous to P. Hall's results. We denote by $\left\{S_{i}\right\}_{n}\left(\left\{T_{i}\right\}_{n}\right)$ a set of Sylow p_{i}-subgroups $S_{i}\left(T_{i}\right)$ of $A(B), i=1, \cdots, n$, respectively.

Theorem 1. Let $(A, B: f, g)$ be solvable and $\left\{S_{i}\right\}_{n}$ a Sylow basis of A. Then there is a Sylow basis $\left\{T_{i}\right\}_{n}$ of B such that for each $i=1$, $\cdots, n,\left(S_{i}, T_{i}: f, g\right)$ is well defined.

The set $\left\{\left(S_{i}, T_{i}: f, g\right)\right\}_{n}$ given in Theorem 1 is called a Sylow basis of $(A, B: f, g)$.

Theorem 2. Let $(A, B: f, g)$ be solvable, let $(M, N: f, g)$ be a subgroup of $(A, B: f, g)$ and $\left\{\left(P_{i}, Q_{i}: f, g\right)\right\}_{m}$ with $m \leqslant n$ a Sylow basis of $(M, N: f, g)$, where each P_{i} has order a power of p_{i}. Then there is a Sylow basis $\left\{\left(S_{i}, T_{i}: f, g\right)\right\}_{n}$ of $(A, B: f, g)$ such that for each $i=1, \cdots, m$, $\left(M \cap S_{i}, N \cap T_{i}: f, g\right)$ is well defined and equal to $\left(P_{i}, Q_{i}: f, g\right)$.

Corollary. Let $(A, B: f, g)$ be solvable and let $\left\{\left(S_{i}, T_{i}: f, g\right)\right\}_{m}$ with $m \leqslant n$ be a set of Sylow p_{i}-subgroups $\left(S_{i}, T_{i}: f, g\right)$ of $(A, B: f, g), i=1$, \cdots, m, such that for each $i, j=1, \cdots, m, S_{i} S_{j}=S_{j} S_{i}$ and $T_{i} T_{j}=T_{j} T_{i}$. Then there is a Sylow basis $\left\{\left(S_{i}, T_{i}: f, g\right)\right\}_{n}$ of $(A, B: f, g)$ which contains $\left\{\left(S_{i}, T_{i}: f, g\right)\right\}_{m}$.

To prove those theorems, we prepare some lemmas. Let π denote a set of primes and ($M, N: f, g$) a subgroup of $(A, B: f, g$) such that M is a π-subgroup (a Hall π-subgroup) of A. Then N is also a π-subgroup (a Hall π-subgroup) of B. In this case, we shall call ($M, N: f, g$) a π subgroup (a Hall π-subgroup) of ($A, B: f, g$). The following is well known.

Lemma 1. Let H be a Hall π-subgroup of a solvable group A and $M \triangleleft A$. Then $H \cap M$ and $M H / M$ are Hall π-subgroups of M and A / M,

