7. Quadruply-Transitive Permutation Groups Whose Four-Point Stabilizer is a Frobenius Group

By Mitsuo Yoshizawa

Department of Mathematics, Gakushuin University, Tokyo (Communicated by Kenjiro SHODA, M. J. A., Dec. 13, 1976)

1. Introduction. In this paper we shall prove the following result.

Theorem. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$. If the stabilizer of four points in G is a Frobenius group, then G is one of the following groups: S_7 , A_8 or M_{23} .

We shall use the same notations as in [1].

2. Proof of the theorem. Let K be the Frobenius kernel of G_{1234} and H a Frobenius complement of G_{1234} .

By a theorem of M. Hall, the order of G_{1234} is even.

Let P be a Sylow 2-subgroup of G_{1234} . Then $P \neq 1$. If P is isomorphic to a subgroup of H, then G is S_7 by Theorem 1 in [2]. Hence we may assume that P is contained in K. Thus P is a normal subgroup of G_{1234} .

By [1; IV] and Lemma 1 in [1; II], $|I(G_{1234})|=4$ and |I(P)|=4, 5, 6, 7or 11. If $|I(P)|\geq 6$, then G is M_{23} by [1; VIII, IX, XI]. If |I(P)|=5, then $|I(G_{1234})|=5$, which is a contradiction. Hereafter we assume |I(P)|=4, and so, that n is an even integer.

If P is semiregular on $\Omega - I(P)$ or P is abelian, then G is A_8 by [1; VII, X]. From now on, we shall examine the case where P is neither semiregular on $\Omega - I(P)$ nor abelian, and prove eventually that this case does not arise.

Let R be a Sylow 3-subgroup of G_{1234} . By [1; XIII] and [3], R is a nonidentity group and $[R, P] \neq 1$. If R is contained in K, then [R, P]=1, which is a contradiction. Hence R must be contained in a conjugate of H.

Let r be an element of order three of R. Then r is an element of order three acting fixed point free on $P-\{1\}$. Hence by [4], the nilpotency class of P is two.

By Theorem A in [5], G_{123} has either (1) an abelian normal subgroup $\neq 1$, or (2) a unique minimal normal subgroup, and this minimal normal subgroup is simple. In the case (1), G must be S_7 or M_{23} by [6], in contradiction to our present assumption |I(P)|=4. We shall now consider the case (2). Let N be the minimal normal subgroup of G_{123} . It is easily seen that G_{123} is contained in Aut(N).