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1. Introduction. In this paper we shall prove the following
result.

Theorem. Let G be a 4-fold transitive group on 2={1,2, --.,n}.
If the stabilizer of four points in G is a Frobenius group, then G is one
of the following groups: S;, A or M,,.

We shall use the same notations as in [1].

2. Proof of the theorem. Let K be the Frobenius kernel of
G and H a Frobenius complement of G,,,.

By a theorem of M. Hall, the order of G,,;, is even.

Let P be a Sylow 2-subgroup of G,,. Then P=+1. If P is iso-
morphic to a subgroup of H, then G is S; by Theorem 1 in [2]. Hence
we may assume that P is contained in K. Thus P is a normal subgroup
of Gy

By [1; IV] and Lemma 1 in [1; II], | I(G,,)|=4 and | I(P)|=4, 5,6, 7
or 11. If [I(P)|=6, then G is M,, by [1; VIII, IX, XI]. If [I(P)|=5,
then |I(G,;,)|=5, which is a contradiction. Hereafter we assume |I1(P)|
=4, and so, that n is an even integer.

If P is semiregular on 2—I(P) or P is abelian, then G is 4; by
[1; VII, X]. From now on, we shall examine the case where P is
neither semiregular on 2 —1I(P) nor abelian, and prove eventually that
this case does not arise.

Let R be a Sylow 3-subgroup of G,,;,. By [1; XIII] and [3], R is
a nonidentity group and [R, P]+1. If R is contained in K, then [R, P]
=1, which is a contradiction. Hence R must be contained in a conju-
gate of H.

Let 7 be an element of order three of E. Then 7 is an element of
order three acting fixed point free on P—{1}. Hence by [4], the nil-
potency class of P is two.

By Theorem A in [5], Gy, has either (1) an abelian normal subgroup
#1, or (2) a unique minimal normal subgroup, and this minimal normal
subgroup is simple. In the case (1), G must be S, or M, by [6], in con-
tradiction to our present assumption [I(P)|=4. We shall now consider
the case (2). Let N be the minimal normal subgroup of G, It is
easily seen that G,,, is contained in Aut(N).



