6. A Note on the Large Sieve

By Yoichi MOTOHASHI Department of Mathematics, College of Science and Technology, Nihon University, Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1977)

1. Let a(n) be arbitrary complex numbers. Let $c_r(n)$ and $\varphi(n)$ be the Ramanujan sum and the Euler function, respectively. Then a slight modification of a recent large sieve inequality of Selberg [1; Théorème 7A] states that we have, uniformly for any Q, R, M, N, k, l,

$$(\ddagger) \qquad \qquad \sum_{\substack{\substack{q \leq q, r \leq R \\ (q,r) = (qr, k) = 1 \\ \leq (N/k + (QR)^2)}} \frac{q}{\varphi(qr)} \sum_{\substack{\chi \pmod{q} \\ n \equiv l \pmod{k}}} \chi(n) c_r(n) a(n) \\ \leq (N/k + (QR)^2) \sum_{\substack{M \leq n \leq M+N \\ n \equiv l \pmod{k}}} |a(n)|^2,$$

where \sum^* denotes as usual a sum over primitive characters $\chi \pmod{q}$. This, in case of k=1, has an important application to Dirichlet's *L*-functions (see [1; p. 40 and p. 83] and also [6] [3]), but in the present note we are concerned with its sieve-effect. As is easily seen, (#) implies the linear sieve result of Bombieri-Davenport [1; Théorème 8] and thus the Brun-Titchmarsh theorem. On the other hand the B-T theorem has recently got some improvements (see [4] and also [5] [2] [7]). So, noticing the fact that the dual of (#), in case of Q=1, is by virtue of $c_r(n)$ reduced to the form similar to the classical sieve idea of Selberg, we may well expect that (#) can be improved so as to contain our improvements of the T-B theorem. Then we shall have a first example of large sieve inequalities sensitive to arithmetic progressions.

Now we announce such an improvement of (#):

Theorem. If (k, l) = 1, then we have

$$\sum_{\substack{q \leq Q, r \leq R \\ (q,r) = (qr, k) = 1}} \frac{q}{\varphi(qr)} \sum_{\chi \pmod{q}} \left| \sum_{\substack{n \leq N \\ n \equiv l \pmod{k}}} \chi(n) c_r(n) a(n) \right|^2$$
$$\leq \Lambda \sum_{\substack{n \leq N \\ n \equiv l \pmod{k}}} |a(n)|^2,$$

where, ε being an arbitrary small positive constant,

$$\Lambda = \frac{N}{k} (1 + O((\log N)^{-1})) + O_{\bullet} \left(\frac{QR^{1+\epsilon}}{\sqrt{k}} (R + kQ^2) (\log N)^4 \right).$$

Corollary. Let p denote a prime and let $\pi(N; k, l)$ be the number of primes $\equiv l \pmod{k}$ less than N. Then we have, under the condition $N^{2/5} \geq Q^2 k$,

$$\sum_{\substack{q \leq Q \\ (q,k)=1}} \sum_{\substack{\chi \pmod{q}}} \sum_{\substack{k \pmod{q}}} \left| \sum_{\substack{p \equiv l \pmod{k} \\ p \leq N}} \chi(p) \right|^2 \leq (2+\varepsilon) \frac{N}{\varphi(k) \log\left(N/(\sqrt{k}Q)\right)} \pi(N; k, l).$$