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5. Compact Complex Manifolds Containing
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0. Introduction. Fix an integer n>2. Fore, 0<e<1, we put
S,={zeC": 1—e<||2||<1+e},
B,={zecC":||z||<1+¢}, and

I={zeC: |2 =1},
where ||2]|=(207-1 12,/ 2=(2,).

Let X be a compact complex manifold of dimension n. An open
subset N of X is called a spherical shell if N is biholomorphic to S, for
some e.

Definition 1. A spherical shell N in X is said to be global if X—N
is connected. Otherwise, N is said to be local.

It is clear that, if N is local, then X—N has two connected com-
ponents. Any complex manifolds contain local spherical shells. But
global spherical shells can be contained in only special types of mani-
folds.

Before stating the main results, we recall the definition of Hopf
manifolds.

Definition 2. A compact complex manifold of dimension n (>2)
is called a Hopf manifold if its universal covering manifold is biholo-
morphic to C"—{0}. A Hopf manifold is said to be primary if its
fundamental group is infinite cyclic.

1. Main results. Theorem 1. Suppose that a compact complex
manifold X of dimension n (>2) contains a global spherical shell. Then
we can construct a complex analytic family =: X—T={te C:|t|<1} of
small deformations of X such that

(i) X=z"Y0),

(i) X,=zn"'(t) (t+£0) is biholomorphic to a compact complex mani-
fold which is a modification of a primary Hopf manifold at finitely
many points.

Corollary 1. The fundamental group of X is infinite cyclic. In
particular, X is non-Kdhler.

We note that X itself is not always a modification of a Hopf mani-
fold. In fact, if n=2, all compact complex surfaces constructed by M.
Inoue in [2] and [3], which are of Class VII, with positive second Betti
numbers, contain global spherical shells, but none of them is a modi-



