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1. Introduction. This note takes its name from the paper [4]
by Takayuki Tamura. In that paper Tamura shows the following
result"

Theorem 1.1. Let K be an Abelian group and A be the group of
integers under addition. If G is an Abelian extension of A by K with
respect to factor system f" K K-.A, then there exists a factor system
g such that

( ) g(a, ) >_ 0 for all , fl in K
(ii) g is equivalent to f

There needs to be a slight change in the proof. Define a new function

’ by ’(D=O and ’()=() if c:/:. Let g(,/3)=f(,/)+’()+’(/)
-’(./).

In his paper Tamura asks if A in Theorem 1.1 can be replaeed by
an ordered Abelian group. We shall show that A can be replaeed by
any subgroup of the additive reals. Alternatively we shall show that
A ean be an Arehimedean ordered Abelian group, as an Arehimedean
ordered Abelian group is isomorphic to a real semigroup.

2. Preliminary results. Let A be a subgroup o the reals under
addition. Let G be an Abelian group containing A. Let S be an N-
subsemigroup (see [4]) of G which contains A/= {x e A" x> 0} such that
G is he quotient group of S. We call A / positive cone of A. Let G
-----_Jea/a A be the decomposition of G into eosets modulo A. Let x e A,
some arbitrary eoset of G, then x= be- for some b, e e S. Let a e A/

cS. As S is Arehimedean there exists positive integer m and some
d e S such that ed=a". Thus xc=b implies xa=xed=bd e S. Note
that as x e A and as a e A we have xa e A and so S

Proposition 2.1. Let A be a subgroup of the reals under addition
and G be an Abelian group containing A. Let S be an N-subsemigroup

of G which contains A+. The following are equivalent"
( ) G is the quotient group of S.
(ii) G--AS.
(iii) S intersects each congruence class of G modulo A.
Proof. We have shown that (i) implies (iii). For any commuta-

tive cancellative semigroup T, we let Q(T) denote the quotient group
of T. If G AS then as A+ S we have A Q(A/) Q(S) and so G-AS


