3. Abelian Groups and N-Semigroups. II

By Thomas NORDAHL

California State College, Stanislaus, Turlock, Calif., U.S.A.

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1977)

1. Introduction. This note takes its name from the paper [4] by Takayuki Tamura. In that paper Tamura shows the following result:

Theorem 1.1. Let K be an Abelian group and A be the group of integers under addition. If G is an Abelian extension of A by K with respect to factor system $f: K \times K \rightarrow A$, then there exists a factor system g such that

(i) $g(\alpha, \beta) \ge 0$ for all α, β in K

(ii) g is equivalent to f.

There needs to be a slight change in the proof. Define a new function δ' by $\delta'(\varepsilon) = 0$ and $\delta'(\alpha) = \delta(\alpha)$ if $\alpha \neq \varepsilon$. Let $g(\alpha, \beta) = f(\alpha, \beta) + \delta'(\alpha) + \delta'(\beta) - \delta'(\alpha\beta)$.

In his paper Tamura asks if A in Theorem 1.1 can be replaced by an ordered Abelian group. We shall show that A can be replaced by any subgroup of the additive reals. Alternatively we shall show that A can be an Archimedean ordered Abelian group, as an Archimedean ordered Abelian group is isomorphic to a real semigroup.

2. Preliminary results. Let A be a subgroup of the reals under addition. Let G be an Abelian group containing A. Let S be an Nsubsemigroup (see [4]) of G which contains $A^+ = \{x \in A : x > 0\}$ such that G is the quotient group of S. We call A^+ positive cone of A. Let $G = \bigcup_{\xi \in G/A} A_{\xi}$ be the decomposition of G into cosets modulo A. Let $x \in A_{\xi}$, some arbitrary coset of G, then $x = bc^{-1}$ for some $b, c \in S$. Let $a \in A^+$ $\subset S$. As S is Archimedean there exists positive integer m and some $d \in S$ such that $cd = a^m$. Thus xc = b implies $xa^m = xcd = bd \in S$. Note that as $x \in A_{\xi}$ and as $a^m \in A$ we have $xa^m \in A_{\xi}$ and so $S \cap A_{\xi} \neq \emptyset$.

Proposition 2.1. Let A be a subgroup of the reals under addition and G be an Abelian group containing A. Let S be an N-subsemigroup of G which contains A^+ . The following are equivalent:

(i) G is the quotient group of S.

(ii) G=AS.

(iii) S intersects each congruence class of G modulo A.

Proof. We have shown that (i) implies (iii). For any commutative cancellative semigroup T, we let Q(T) denote the quotient group of T. If G=AS then as $A^+ \subset S$ we have $A=Q(A^+) \subset Q(S)$ and so G=AS