3. Abelian Groups and N.Semigroups. II

By Thomas Nordahl
California State College, Stanislaus, Turlock, Calif., U. S. A.
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1977)

1. Introduction. This note takes its name from the paper [4] by Takayuki Tamura. In that paper Tamura shows the following result:

Theorem 1.1. Let K be an Abelian group and A be the group of integers under addition. If G is an Abelian extension of A by K with respect to factor system $f: K \times K \rightarrow A$, then there exists a factor system g such that
(i) $g(\alpha, \beta) \geq 0$ for all α, β in K
(ii) g is equivalent to f.

There needs to be a slight change in the proof. Define a new function δ^{\prime} by $\delta^{\prime}(\varepsilon)=0$ and $\delta^{\prime}(\alpha)=\delta(\alpha)$ if $\alpha \neq \varepsilon$. Let $g(\alpha, \beta)=f(\alpha, \beta)+\delta^{\prime}(\alpha)+\delta^{\prime}(\beta)$ $-\delta^{\prime}(\alpha \beta)$.

In his paper Tamura asks if A in Theorem 1.1 can be replaced by an ordered Abelian group. We shall show that A can be replaced by any subgroup of the additive reals. Alternatively we shall show that A can be an Archimedean ordered Abelian group, as an Archimedean ordered Abelian group is isomorphic to a real semigroup.
2. Preliminary results. Let A be a subgroup of the reals under addition. Let G be an Abelian group containing A. Let S be an N subsemigroup (see [4]) of G which contains $A^{+}=\{x \in A: x>0\}$ such that G is the quotient group of S. We call A^{+}positive cone of A. Let G $=\bigcup_{\xi \in G / A} A_{\xi}$ be the decomposition of G into cosets modulo A. Let $x \in A_{\xi}$, some arbitrary coset of G, then $x=b c^{-1}$ for some $b, c \in S$. Let $a \in A^{+}$ $\subset S$. As S is Archimedean there exists positive integer m and some $d \in S$ such that $c d=a^{m}$. Thus $x c=b$ implies $x a^{m}=x c d=b d \in S$. Note that as $x \in A_{\xi}$ and as $a^{m} \in A$ we have $x a^{m} \in A_{\xi}$ and so $S \cap A_{\xi} \neq \emptyset$.

Proposition 2.1. Let A be a subgroup of the reals under addition and G be an Abelian group containing A. Let S be an N-subsemigroup of G which contains A^{+}. The following are equivalent:
(i) G is the quotient group of S.
(ii) $G=A S$.
(iii) S intersects each congruence class of G modulo A.

Proof. We have shown that (i) implies (iii). For any commutative cancellative semigroup T, we let $Q(T)$ denote the quotient group of T. If $G=A S$ then as $A^{+} \subset S$ we have $A=Q\left(A^{+}\right) \subset Q(S)$ and so $G=A S$

