1. On Cauchy Problem for a System of Linear Partial Differential Equations with Constant Coefficients

By Hitoshi Furuya and Mitio Nagumo
Sophia University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 13, 1976)

1. Introduction. We shall consider the Cauchy problem for a system of partial differential equations for a system of unknown functions $u_{\mu}=u_{u}(t, x)(\mu=1, \cdots, k)$ of two independent real variables t and x :

$$
\partial_{t} u_{\mu}=\sum_{\nu=1}^{k} P_{\mu \nu}\left(\partial_{x}\right) u_{\nu} \quad(\mu=1, \cdots, k),
$$

where $P_{\mu \nu}(\zeta)$ are polynomials in ζ with constant complex coefficients. Using vector-matrix notations we can write for the above system of equations as
(1)

$$
\partial_{t} u^{\downarrow}=\boldsymbol{P}\left(\partial_{x}\right) u^{\downarrow},
$$

where $u^{\downarrow}=\left(u_{\mu}, \mu \downarrow 1, \cdots, k\right)$ and $\boldsymbol{P}(\zeta)=\left(P_{\mu \nu}(\zeta)_{\nu 11, \cdots, k}^{\mu+1}\right)$.
Let \mathscr{F} be a linear space of (generalized) complex vector valued functions on R^{1} such that $\mathcal{S}^{k} \subset \mathscr{F} \subset \mathcal{S}^{\prime k}{ }^{1)}$ where the topology of the space on the left side of \subset is finer than that of the space on the right side of \subset.

The Cauchy problem for the equation (1) is said to be forward \mathcal{F} well posed on the interval $[0, \tau](\tau>0)$, if and only if the following two conditions are satisfied.

1) (Unique existence of the solution) For any $u_{0}^{1} \in \mathscr{F}$ there exists a unique \mathscr{F}-valued solution $u^{\downarrow}=u^{\perp}(t, x)$ of (1) for $t \in[0, \tau]$ with the initial condition $u^{\perp}(0, x)=u_{0}^{1}(x)$.
2) (Continuity of solution with respect to the initial value) If the initial value u_{0}^{\perp} tends to zero in \mathscr{F}, then the solution $u^{\downarrow}=u^{\perp}(t, x)$ of (1) with the initial value $u^{\downarrow}(0, x)=u_{0}^{\mathfrak{l}}(x)$ also tends to zero in \mathscr{F} uniformly for $t \in[0, \tau]$.

Since the operator $P\left(\partial_{x}\right)$ does not depend on the time variable t, we can easily see that the forward \mathscr{F}-well posedness does not depend on $\tau>0$, hence we can simply use the forward \mathscr{F}-well posedness without mentioning the interval $[0, \tau]$.

Making use of the Fourier transform with respect to the space variable x

$$
v^{\perp}(\xi)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} e^{-i \xi x} u^{\perp}(x) d x
$$

[^0]
[^0]: 1) $u^{*} \in \mathcal{S}^{k}\left(\mathcal{S}^{\prime k}\right)$ means that $u_{\mu} \in \mathcal{S}\left(\mathcal{S}^{\prime}\right)$ for every $\mu=1, \cdots, k$, where \mathcal{S} denotes the set of all rapidly decreasing C^{∞} functions on R^{1} and \mathcal{S}^{\prime} means the dual space of \mathcal{S}.
