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In this note we shall extend the deformation theory of compact
complex manifolds to compactifiable ones defined below.

1. We fix our notation.

X: a compact complex manifold,

D: a closed analytic subset of X (not necessarily reduced),

X:=X-D,

I;: the ideal sheaf of D in Oy,

Tx(log D): the subsheaf of the tangent sheaf Ty consisting of
derivations of @y which send I3 into itself.

D is said to be of simple normal crossing if (1) D:O D, where
=1

the D, are complex submanifolds of X, and (2) for each p ¢ X, there
exist a neighborhood U of p and a system of local coordinates {z,, - - -, 2,,}
on U such that D,={z,,,,=- - - =2,,,,=0} for 1<i<h, where the r, are
integers such that —1<i<n and r,<7, if ¢<j and we put 2,=1 by
convention. In that case X is called a non-singular compactification
of X and (X, X, D) is called a non-singular triple. For a fixed X, a
bimeromorphic equivalence class m of non-singular compactifications
of X is called a meromorphic structure of X. A pair (X, m) is called
a compactifiable complex manifold.

By a family of logarithmic deformations of a non-gingular triple
we mean a T-tuple =%, %,d,r, S, s, ¥) such that 1) z: ¥—>S is a
proper smooth morphism of (not necessarily reduced) complex spaces
X and S, (2) D is a closed analytic subset of ¥ and ¥=X—9, 3) ¥v: X
—77Y(s,) is an isomorphism such that V(X)=z"Ys)N¥%, and 4) = is
locally a projection of a product space as well as the restriction of it
to . A family of compactifiable deformations of a compactifiable
complex manifold (X, m) is a 5-tuple (%X, #, S, sy, V) obtained from the
T-tuple above.

Theorem 1. We have the following exact sequences:

(1) 0—> T y(—D)—>Tx(log D)—>T5—>0
where Ty is the sheaf of derivations Derez(Oz, Oz).
(2) 0—>Tz(log D)——>Tz—>Nz—>0

where Ny =Coker (T3—Tx&e, Op).



