PROCEEDINGS

OF THE

IMPERIAL ACADEMY

Papers Communicated

Approximation of an Irrational Number by Rational Numbers.

By Matsusaburo Fujiwara m. i. a.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Rec. Oct. 14, 1925. Comm. Dec. 12, 1925.)

Let ω be any positive irrational number, whose expansion into simple continued fraction is represented by

$$\omega = a_0 + \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} + \cdots = [a_0 a_1 a_2 \cdot \cdots \cdot a_n \cdot \cdot].$$

If $\frac{P_n}{Q_n} = [a_0 a_1 a_2 \dots a_n]$ be the *n*-th convergent, and

$$S_n = Q_n^2 \left| \omega - \frac{P_n}{Q_n} \right|,$$

then the classical theorem due to Hurwitz and Borel can be expressed

by
$$\min(S_{n-1}, S_n, S_{n+1}) < \frac{1}{\sqrt{5}},$$
 and $\min(S_{n-1}, S_n, S_{n+1}) < \frac{1}{\sqrt{8}}, \text{ if } a_{n+1} = 2.$

I have extended¹⁾ this theorem in the form

Mini
$$(S_{n-1}, S_n, \ldots, S_{n+3}) < \frac{5}{\sqrt{221}},$$

¹⁾ Bemerkung zur Theorie der Approximation der irrationalen Zahl durch rationale Zahlen, Science Reports of the Tôhoku Imperial University, Ser. I, 14 (1924). See also the Japanese Journal of Mathematics, 1 (1924).