17. Approximation of an Irrational Number by Rational Numbers.

By Kwan Shibata,
Sendai Higher Technical School.

(Rec. Dec. 24, 1925. Comm. by M. Fujlwara, M.I.A., Jan. 12, 1926.)

1. Let ω be a positive irrational number, $\left[\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots \cdots\right]$ its expansion into the simple continued fraction, and

$$
\begin{gathered}
P_{n} / Q_{n}=\left[\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots \cdots, \alpha_{n}\right], \\
P_{\lambda, n} / Q_{\lambda, n}=\left[\alpha_{\lambda+1}, \cdots \cdots, \alpha_{n}\right] .
\end{gathered}
$$

Prof. Fujiwara ${ }^{(1)}$ proved that the minimum of

$$
Q_{n}^{2}\left|\omega-\frac{P_{n}}{Q_{n}}\right|, \quad Q_{m}^{2}\left|\omega-\frac{P_{m}}{Q_{m}}\right| \quad \text { and } \quad Q_{i}^{2}\left|\omega-\frac{P_{l}}{Q_{\imath}}\right|
$$

is less than

$$
\frac{1}{\sqrt{9-\frac{4}{Q_{n, \imath}^{2}}}}
$$

when $Q_{n, m}, Q_{m, l}$ and $Q_{n, l}$ satisfy Markoff's equation

$$
x^{2}+y^{2}+z^{2}=3 x y z
$$

and $m-n, l-m$ are odd.
By his suggestion, I have determined the numbers m, l for any Markoff's period.
2. Adopting Markoff's notations ${ }^{(2)}$, let $Q\left\{a, a_{1}, a_{2}, \cdots \cdots, a_{k}, 2\right\}$ and $\Re(2, \alpha, \alpha, \cdots \cdots \lambda, \lambda, 2)$ be Markoff's number and the period of the continued fraction corresponding to the period $\left\{a, a_{1}, a_{2}, \cdots \cdots a_{k}, 2\right\}$ respectively. Then from the relation
$\begin{aligned}\left\{a+1, a_{1}, \cdots \cdots, a_{k}, 2\right\} & =\left\{a, a_{1}, a_{2}, \cdots \cdots, a_{k}, 2\right\}+\left\{a_{1}-1, a_{2}, \cdots \cdots a_{k}, 2\right\}(k=\text { odd }), \\ \text { or } & =\left\{a_{1}-1, a_{2}, \cdots, a_{k} 2\right\}+\left\{a, a_{1}, a_{2}, \cdots \cdots a_{k} 2\right\}(k=\text { even }),\end{aligned}$
(1) These Proceedings 2, 1-3.
(2) A. Markoff, Sur les formes quadratiques binaires, Math. Ann., 17 (1880), or Bachmann, Die Arithmetik der quadratischen Formen II, 106-129.

