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(Rec. Dec. 12, 1925. Comm. Jan. 12, 1926).

Two algebraic equations F(x)--lI(x--a)=O and G(y)=II(y-v)’-O
of degrees m and n respectively, irreducible in the rationality-domain R,
being given, let a polynomial (., y) with rational coefficients be so

chosen, that the mn values r=(a, ) are different from each other.
These values are the roots of an equation H(z) =0 of degree mn in R and
(r)=R(, ).

Then we have the following very simple and interesting theorem,
which seems to have remained unnoticed.

If H(z) eaks up in e fact,s h (z), ivredible in R, and of degree l
(i=l, 2, e), and if fi(x, ) is the geatest common divis of x) and
h,[x, ], and g(y, a) of G(y) and h,[a, y], then

F(x)=(x, )fl(x, ) .f(x, ),

e(y)=9l(y, )a(y, ) a(y, )

give the decompositio into ivrucible facton of) and G(y) in R() and
() sptiy.--h,[, y] td’for h,{(, y)}, o for ,y root of
F(z)=0 or of G(y)=(). Iff(z, g) and g(y, a) are of degrees m,s and n
respectively, then it is known that

l, m,n=mn,, m n, (i 1, 2, e).

Proof is almost redundant, r,.=(a,/) denoting a root of h,(z)=0,
h,[x, gv] has with F(x) the greatest common divisor of a degree, say
m’>0, which, on account of the irreducibility of G(y)=0 in R, must be
independent of , so that the greatest common divisor is f,(x, ,)and
’=ni. The total number of the common roots of F(x)=0 and

h.[z, tg] =0, =1, 2, n, being l, we have/,= mn. If now h[a,/]=0


