2. Projective Differential-Geometrical Properties of the One-Parameter Families of Point-Pairs in the One-Dimensional Space.

By Akitsugu Kawaguchi.
Mathematical Institute, Tôhoku Imperial University, Sendai.

(Rec. Dec. 20, 1920. Comm. by M. Fujiwara, m.i.a., Jan. 12, 1927.)

1. When we consider point-pairs in the one-dimensional space as space element, we can treat a one-parameter family of point-pairs in quite similar way as a curve in the two-dimensional space.

In the homogeneous point-coordinates (x_{1}, x_{2}) a point-pair is represented by the equation

$$
\sum_{i, k} a_{i k} x_{i} x_{k}=0 \quad(i, k=1,2)
$$

therefore we take $a_{i k}$ as the homogeneous coordinates of a point-pair, and

$$
a_{i k}^{*}=\left|a_{l m}\right|^{-\frac{1}{2}} a_{i k}
$$

as its normalized coordinates.
2. Let $a_{i k}(t)$ be the normalized coordinates of a one-parameter family F of point-pairs, and let

$$
(m, n)=\left|\begin{array}{ll}
a_{11}^{(m)} & a_{12}^{(n)} \\
a_{21}^{(m)} & a_{22}^{(n)}
\end{array}\right|+\left|\begin{array}{ll}
a_{11}^{(n)} & a_{12}^{(m)} \\
a_{21}^{(n)} & a_{22}^{(m)}
\end{array}\right|,
$$

where

$$
a_{i k}^{(m)}=\frac{d^{m} a_{i k}(t)}{d t^{m}}
$$

Then evidently the relations

$$
(0,0)=2, \quad(1,0)=0
$$

hold good, while $(1,1)$ does not identically vanish in general. So as the natural parameter we adopt

$$
p=\frac{1}{i \sqrt{2}} \int \sqrt{(1,1)} d t
$$

instead of t and denote $(2,2)$ by $2 I$. We call the quantity p the projective

