No. 3.]

34. On a Property of Transcendental Integral Functions.

By Tatsujiro Shimizu.

Mathematical Institute, Tokyo Imperial University.

(Rec. Feb. 25, 1927 Comm. by T. TAKAGI, M. I. A., March 12, 1927.)

Mr. Tsuji¹⁾ proved that for a class of integral functions f(z), for which f(0) = a, $f(z_i) = b$, $(i = 1, 2, \cdots)$, where $a \neq b$, $a \neq 0, \neq 1$, and $b \neq 0, \neq 1$ and $|z_1| \leq |z_2| \leq \cdots \rightarrow \infty$, there exists an infinite number of concentric ring-regions $|z| < R_1$, $R_i < |z| < R_{i+1}$ $(i = 1, 2, \cdots)$, R_i depending only on the class, in which all the functions of the class take at least once the value 1 or 0.

We will here prove the following allied

Theorem: Consider a class of integral functions

$$f(z) = c_0 + c_1 z + c_2 z^2 + \dots + c_m z^m + \dots,$$
 (1)

for which $|c_m| \ge \frac{l_0}{m!} > 0$ for a certain value of $m \ge 1$, and $|f(z_i)| = l_i < M$

(i = 1,2,...), where l_i are positive constants? and $|z_1| \le |z_2| \le \cdots \to \infty$, then there exists an infinite number of concentric ring-regions $|z| < R_1$, $R_i < |z| < R_{i+1}$, (i = 1,2,...), R_i depending only on the class, in which any function (1) takes at least once the value 1 or 0, and we can find an expression for an infinite number of radii R_i of the ring-regions $R_i < |z| < R_{i+1}$.

Proof. Suppose, if possible, that a function (1) does not take the values 1 and 0 in the ring-region $0 \le R_0 < |z| < R$, $R = 2(r_i - R_i) + R_0$, where $|z_i| = r_i$, and therefore in the circle of radius $r_i - R_0$ with center at z_i , then by Landau's theorem³⁾ we have in $|z - z_i| < \frac{r_i - R_0}{2}$

$$|f(z)| < \Omega(M).$$
 (2)

Now take $2q\left(q < \left[\frac{2\pi}{1 - R_i/r_i}\right] + 1\right)$ circles $C_{i,\pm h} (h = 1,2,\cdots q)$ of radius

¹⁾ Proc. Imperial Academy, 2 (1926) 364-365.

²⁾ In this case it is not necessary that $c_m \neq l_i$.

³⁾ Götting. Nachr. (1910), 309.