## 157. On the Class of Functions with Absolutely Convergent Fourier Series.

By Kien-Kwong CHEN. Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Nov. 2, 1928.)

1. Let

(1) 
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

be the Fourier series of a periodic summable function f(x) with the period  $2\pi$ . As regards the absolute convergence of the series (1), Zygmund<sup>1)</sup> has given a sufficient condition in the form that the function f(x) is of limited variation and satisfies Lipschitz's condition of the positive order.

In this note, we determine the class of all the functions whose Fourier series converge absolutely.

A periodic function f(x) is said to be Young's continuous function, if there exist two periodic square-summable functions  $f_1(x)$ ,  $f_2(x)$ , satisfying the relation

$$f(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f_1(\xi) f_2(\xi + x) d\xi$$
,

here and afterwards the period being taken to be  $2\pi$ . The functions of such a type were first considered by Young<sup>2</sup>). Now we will prove the following theorem :

The necessary and sufficient condition for the absolute convergence of a trigonometrical series in the whole interval<sup>3)</sup>, is that the series is a Fourier series of a Young's continuous function.

2. First we prove the necessity of the condition. Assuming the absolute convergence of the series

(1) 
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$$

<sup>1)</sup> A. Zygmund, Remarque sur la convergence absolue des séries de Fourier, The Journal of the London Math. Soc., 3 (1928), 194-196.

<sup>2)</sup> W.H. Young, On a class of parametric integrals etc., Proc. Roy. Soc. (A), 85 (1911), 401-414.

<sup>3)</sup> N. Lusin proved that if a trigonometrical serie is absolutely convergent at a set of positive measure, it converges everywhere absolutely; see Comptes Rendus, **155** (1912), 580.