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62. A Generalization of Ostrowski’s Theorem on
“ Overconvergence ”’ of Power Series.
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Shiomi Institute, Osaka.
(Comm. by M. FUIIWARA, M.LA., June 13, 1932.)

In my previous paper,” I have proved that a function f(2),
regular and analytic for |2| <<r(r=>1), can be expanded into the series
of the form

1) f(z)=§§, c.2 e
which converges absolutely and uniformly for |2| <1 provided that
li_mla,,}=L<%.
Let {7.(2)} be a sequence of polynomials defined by
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where D=1, p@)= j j ...... f”“dt,.dt,._l ...... dt,, (m=1).
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Since {7.(z)} and {z"¢>~"} are each other biorthogonal® on |z|=1,
we have, from (1),
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the series on the right hand side of (2) being convergent absolutely
and uniformly for |¢|=>7">|z|.

Now let f(2) be a function, regular and analytic for |z|<<1, with
at least one singular point on |z|=1. Then the function defined by
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may easily be shown to be an integral transcendental function of type
1 and of the first order, and this ecan be uniquely determined if
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