## 3. A Theorem on Cesàro Summability.

## By Tatsuo Takahashi.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. Fujiwara, m.I.A., Jan. 12, 1934.)

Recently Prof. Y. Okada proved the theorem:
Let the series ${ }^{1} \sum_{n=0}^{\infty} a_{n}$ be summable ( $\left.C, a\right)(a>-1)$, with sum $s$. If, for any given non-negative $k$,

$$
\begin{equation*}
\underline{\lim }\left(C_{n}^{(k)}-C_{m}^{(k)}\right) \geqq 0 \quad\left(\frac{n}{m} \rightarrow 1, \quad n>m \rightarrow+\infty\right) \tag{1}
\end{equation*}
$$

holds, then the series is summable ( $C, k$ ) with sum $s$, where

$$
C_{n}^{(k)}=\frac{S_{n}^{(k)}}{\binom{(k)}{k}},
$$

and

$$
S_{n}^{(k)}=\sum_{v=0}^{n}(\underset{k}{n-\nu-k}) a_{v} .
$$

In the present paper, it is aimed to deduce a more general theorem, from Schmidt's theorem which runs as follows:

Let the series be summable by Abel's method with sum s. If

$$
\underline{\lim }\left(s_{n}-s_{m}\right) \geqq 0 \quad\left(\frac{n}{m} \rightarrow 1, \quad n>m \rightarrow+\infty\right)
$$

holds, then the series is convergent with sum s, where

$$
s_{n}=\sum_{\nu=0}^{n} a_{\nu} .
$$

Theorem. Let the series $\sum a_{n}$ be summable by Abel's method with sum s. If for any given non-negative $k$, (1) holds, then the series is summable ( $C, k$ ) with sum s.

Without loss of generality, we can suppose that $s=0$. Consider the series

$$
\sum_{v=0}^{n}\left(C_{v}^{(k)}-C_{v-1}^{(k)}\right), \quad\left(C_{-1}^{(k)}=0\right),
$$

then

$$
\sum_{v=0}^{n}\left(C_{v}^{(k)}-C_{v-1}^{(L)}\right)=C_{n}^{(k)} .
$$

1) We consider here only real series.
2) Y. Okada: On the converse of the consistency of Cesaro's summability, Tohoku Mathematical Journal, 38 (1933).
