15. On the Convergence Factor of the Fourier-Denjoy Series.

By Fu Traing WANG.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by FUJIWARA, M.I.A., Feb. 12, 1934.)

Hardy has shown that $(\log n)^{-1}$ is a convergence factor of the Fourier-Lebesgue series. The object of this paper is to show that n^{-1} is a convergence factor of the Fourier-Denjoy series, and to construct an example such that $n^{-\delta}$ $(0 \le \delta \le 1)$ is not the convergence factor of the Fourier-Denjoy series.

1. Let f(x) be a function, integrable in Denjoy-Perron's sense and periodic, with period 2π . And let

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) . \qquad (1 \cdot 1)$$

Then we have

Theorem. n^{-1} is a convergence factor of the Fourier-Denjoy series $(1 \cdot 1)$. In fact,

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{n}$$
(1 · 2)

converges almost everywhere.

In order to prove the theorem, we require the following

Lemma.¹⁾ The Fourier-Denjoy series (1.1) is summable $(C, 1+\delta)$ $(\delta \ge 0)$ almost everywhere.

Put
$$s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx),$$

 $\phi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) - 2f(x) \},$
 $\phi_1(t) = \int_0^t \phi(u) du.$

and

Then $\phi_1(t) = o(t)^{2}$

for almost all values of x in $(-\pi, \pi)$, and then

- c.f. Bosanquet, Proc. London math. soc. 31.
- 2) Hobson: Theory of function, vol. I (1921), p. 642.

¹⁾ Priwalof: Rend. di Palermo, 41 (1916).