PAPERS COMMUNICATED

37. The Foundation of the Theory of Displacements, III.

(Application to a manifold of matrices.)

By Akitsugu KAWAGUCHI.

Mathematical Institute, Hokkaido Imperial University, Sapporo. (Comm. by M. FUJIWARA, M.I.A., Feb. 12, 1934.)

Three kinds of displacements for a manifold of matrices are considered in this paper from the standpoint of the general theory set out in my previous paper (F.D.I.) and also from that of its application to a manifold with a linear connection.

1. Let us consider a manifold of finite dimensions M with a coordinate system x^{λ} ($\lambda = 1, 2, ..., n$) and associate a manifold of matrices to its each point, where under the underlying isomorphism between any two manifolds \overline{M} in §6 (F.D.I.) the corresponding matrices have corresponding elements of the same values. Then (10) in F.D.I. becomes

(1)
$$\nabla A = dA + \Gamma(A)$$

for a matrix A in \overline{M} determined uniquely for every point of M, where $\Gamma(A)$ is a matrix depending on x^{λ} and the differential dA is a matrix, whose elements are differentials of that of A. Our object is not to consider such a general displacement, but a special one such that

(2)
$$\nabla A = dA + \Gamma A + A \Gamma'$$

where Γ and Γ' are matrices independent of A. This displacement is clearly linear and has many interesting properties, as we see in the following. When Γ and Γ' are linear forms with respect to dx^{λ} and have such forms that $\Gamma = \Gamma_{\lambda}(x)dx^{\lambda}$, $\Gamma' = \Gamma'_{\lambda}(x)dx^{\lambda}$, then it follows from (2)

(3)
$$\nabla_{\lambda}A = \frac{\partial A}{\partial x^{\lambda}} + I_{\lambda}A + A\Gamma_{\lambda}'$$

2. For the covariant derivatives of the inverse matrix A^{-1} of A it seems to be most natural to define them in the same manner as

¹⁾ We may also define such a differentiation, that $\nabla a_{ij} = da_{ij} + \sum_{k,l} \Gamma_{ij}^{kl} a_{kl}$ where $A = \langle \langle a_{ij} \rangle \rangle$. A special case of this connection has been studied by S. Hokari: Über die Bivektorübertragung, Journal of the Faculty of Science, Hokkaido Imperial University, Series I, 2 (1934), 103-117.