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28. On Hansen’s Coefficients in the Expansions
for Elliptic Motion.
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(Comm. by K. HIRAYAMA, M.L.A.,, Mar. 12. 1935.)

Let » be the radius vector, a the semi-major axis, v the true
anomaly, { the mean anomaly, # the eccentric anomaly, e the eccen-
tricity, and m a positive integer, n an integer, positive or negative.
Further put z=FE®*, where E is the base of Napier’s logarithm and
i=1"—1. The coefficients X?™ in the Laurent expansion of a function :

(LyEi’””:(L)n(cos mv +1 sin mv)= 2.0 Xy,
a a i
are called Hansen’s coefficients and were studied by Tisserand® with an
elementary but complicated analysis. I propose to deduce the same
result by a simpler mode of procedure.
The coefficients can be written
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where t=E®, by the famous Cauchy’s theorem of residues in the theory
of analytic functions, the contour of integration being taken so as to
make a positive circuit round z2=0 in the ring-domain excepting z=0

and z=. Now write s=E* and

w=
1+v1-é e
then Kepler’s equation can be transformed into

p=sE 05

By the well-known formula for elliptic motion, we have
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Hence

N 1
X Eji%(“‘?) .87 1ds ,

1) F. Tisserand: Traité de Mécanique Céleste. T. 1 (1889), Chap. XV.



