No. 10.]

111. A Note on the Continuous Representation of Topological Groups.

By Kôsaku Yosida.

Mathematical Institute, Osaka Imperial University. (Comm. by T. Yosie, M.I.A., Dec. 12, 1936.)

§ I. In a recent paper,¹⁾ the author treated the group \mathfrak{D} embedded in the *metrical complete ring* \mathfrak{R} . Such a group \mathfrak{D} is, by [I], a *Lie group* (as defined in [I]²⁾) if and only if \mathfrak{D} is locally compact.

In another paper,³⁾ I obtained a result saying that, if \mathfrak{D} is continuously homomorphic to a connected and locally bicompact topological group \mathfrak{G} (without any countability axiom), then \mathfrak{D} is a Lie representation (defined in [II]).

A Lie representation \mathfrak{D} is not necessarily a Lie group as defined in [I] (see [II]), though the *infinitesimal operators* of \mathfrak{D} obey the customary rule of the ordinary *Lie-ring*, when \mathfrak{G} is a Lie group (see [II]).

However we may add the following remark:

The representation \mathfrak{D} of \mathfrak{G} is a Lie group (as defined in [I]) if and only if the homomorphic mapping $\mathfrak{G} \rightarrow \mathfrak{D}$ is open.

Here a continuous mapping is called open if the mapped image of any open set is an open set.

Proof. \mathfrak{D} is isomorphic to the quotient group $\mathfrak{G}/\mathfrak{N}$, where \mathfrak{N} is an invariant subgroup closed in \mathfrak{G} . We call any set in $\mathfrak{G}/\mathfrak{N}$ open if and only if it corresponds to an open set in \mathfrak{G} by the homomorphic mapping $\mathfrak{G} \to \mathfrak{G}/\mathfrak{N}$. Then $\mathfrak{G}/\mathfrak{N}$ is connected and locally bicompact with \mathfrak{G} . Thus \mathfrak{D} is continuously isomorphic to $\mathfrak{G}/\mathfrak{N}$ and the mapping $\mathfrak{G} \to \mathfrak{D}$ is open if and only if the mapping $\mathfrak{G}/\mathfrak{N} \to \mathfrak{D}$ is open.

Hence we may- and shall- assume that $\mathfrak D$ is continuously isomorphic to $\mathfrak G$.

Thus if the mapping $\mathfrak{G} \to \mathfrak{D}$ is open, \mathfrak{G} and \mathfrak{D} are homeomorphic with each other, and hence \mathfrak{D} is locally bicompact and connected with \mathfrak{G} . This proves the sufficiency of the condition of the remark.

As the group \mathfrak{D} is embedded in \mathfrak{R} , \mathfrak{D} does not contain an arbitrarily small cyclic subgroup (\neq identical group⁴). \mathfrak{G} enjoys the same property, for \mathfrak{D} is continuousy isomorphic to \mathfrak{G} . By a theorem due to A. Komatu and S. Kakutani (see [II]) \mathfrak{G} satisfies the first axiom of countability, since \mathfrak{G} is locally bicompact. Hence \mathfrak{G} is metrisable by a result of S. Kakutani.⁵⁾

¹⁾ K. Yosida: On the group embedded in the metrical complete ring, Jap. J. of Math. 13 (1936). This paper will be cited as [I].

²⁾ The condition τ) in the definition of a *Lie group* in [I] is not an essential one, it states that the group is connected. Hence it may be omitted out of the definition.

³⁾ K. Yosida: On the group embedded in the metrical complete ring, II, to appear soon in Jap. J. of Math. This paper will be cited as [II].

⁴⁾ For the proof see [I].

⁵⁾ S. Kakutani: Über die Metrisation der topologischen Gruppen, Proc. 12 (1936). Cf. also G. Birkhoff: A note on topological groups, Comp. Math. 3 (1936).