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(Comm. by T. YOSE, M.LA., Dec. 12, 1936.)

I. In a recent paper,) the author treated the group embedded
in the metrical complete ring 9{. Such a group ) is, by [I], a L/e
group (as defined in [I])) if and only if is locally compact.

In another paper, I obtained a result saying that, if is conti-
nuously homomorphic to a connected and locally bicompact topological
group (withou any countability axiom), then ) is a Le representa-
tion (defined in [II]).

A Lie representation , is not necessarily a Lie group as defined in
[I] (see [II]), though the infinitesimal operators of obey the customa-
ry rule of the ordinary Lie-ring, when ( is a Lie group (see [II]).

However we may add the following remark:
The representation ) of ( is a Lie group (as defined in [I]) if

and only if the homomorphic mapping ---, is open.
Here a continuous mapping is called open if the mapped image of

any open set is an open set.
Proof. is isomorphic to the quotient group (]9, where 9 is an

invariant subgroup closed in (. We call any set in (]9 open if and
only if it corresponds to an open set in by the homomorphic mapping
(--*(]9. Then (]9 is connected and locally bicompact with (. Thus
) is continuously isomorphic to (]9 and the mapping (---) is open
if and only if the mapping (/9--, is open.

Hence we may- and shall- assume that )is continuously isomorphic

Thus if the mapping (--, is open, ( and are homeomorphic
with each other, and hence is locally bicompact and connected with (.
This proves the sufficiency of the condition of the remark.

As the group ) is embedded in 9, does not contain an arbitrarily
small cyclic subgroup ( identical group}. ( enjoys the same property,
for is continuousy isomorphic to (. By a theorem due to A. Komatu
and S. Kakutani (see [II]) ( satisfies the first axiom of countability,
since ( is locally bicompact. Hence ( is metrisable by a result of S.
Kakutani.
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