318 [Vol. 12,

108. Verschiebungs- und Abgrenzungssatz in der Theorie der Klassenkörper über einem algebraischen Funktionenkörper einer Unbestimmten mit endlichem Konstantenkörper.¹⁾

Von Mikao Moriya.

Mathematisches Institut, Hokkaido Kaiserliche Universität zu Sapporo. (Comm. by T. TAKAGI, M.I.A., Dec. 12, 1936.)

Über einem algebraischen Funktionenkörper K einer Unbestimmten mit endlichem Konstantenkörper betrachte ich eine endliche separable abelsche Erweiterung L. Dann existiert in K ein ganzer Divisor m und eine mod m erklärbare Divisorengruppe H derart, dass L der H zugeordnete Klassenkörper über K wird. Bildet man nun für eine beliebige endliche separable Erweiterung \overline{K} über K das Kompositum $\overline{L} = L\overline{K}$ von \overline{K} und L, so gilt folgender

Satz 1. Verschiebungssatz. Der abelsche Körper \overline{L} ist ein Klassenkörper zu derjenigen Divisorengruppe $\overline{H}^{(m)}$, welche aus allen zu m primen Divisoren aus \overline{K} besteht, deren Normen (nach K) in H fallen.

Beweis. Man kann zuerst leicht zeigen, dass $\overline{H}^{(\mathfrak{m})}$ mod \mathfrak{m} erklärt ist. Bezeichnet man jetzt mit $\overline{A}^{(\mathfrak{m})}$ die Gesamtheit aller zu \mathfrak{m} primen Divisoren in \overline{K} , und setzt $[\overline{A}^{(\mathfrak{m})}:\overline{H}^{(\mathfrak{m})}]=h$, $[\overline{L}:\overline{K}]=n$, so braucht man nur zu geigen:

$$h \geq n$$
,

weil die mod m \overline{L} zugeordnete Divisorengruppe in $\overline{H}^{(m)}$ enthalten ist.³⁾ Nun bezeichne ich mit $\overline{\mathfrak{p}}_1$ und $\overline{\mathfrak{p}}_2$ die Primdivisoren aus $\overline{H}^{(m)}$, deren Relativgrade nach K resp. gleich 1 und grösser sind als 1. Dann zerfallen alle $\overline{\mathfrak{p}}_1$ in \overline{L} voll. Da nämlich die $\mathfrak{p}_1 = N_{\overline{K}K}(\overline{\mathfrak{p}}_1)$ Primdivisoren aus H sind und L der H zugeordnete Klassenkörper ist, so zerfallen die \mathfrak{p}_1 nach dem Zerlegungsgesetz in L voll. Aus einem Herbrandschen Lemma⁴⁾ schliesst man dann sofort, dass die $\overline{\mathfrak{p}}_1$ in \overline{L} vollzerfallen. Für die $\overline{\mathfrak{p}}_2$ existieren aber in K die Primdivisoren \mathfrak{p}_2 derart, dass $N_{\overline{K}K}(\overline{\mathfrak{p}}_2) = \mathfrak{p}_2^{\mathcal{L}}$ mit f > 1 sind.

¹⁾ In der mir zugänglichen Literatur sind die beiden Sätze nirgendwo bewiesen. Da ich diese Sätze für meine weitere Untersuchung benutze, so habe ich mich entschlossen, die Beweise hier anzugeben.

²⁾ F. K. Schmidt, Die Theorie der Klassenkörper über einem Körper algebraischer Funktionen in einer Unbestimmten und mit endlichem Konstantenbereich, Sitzungsberichte der phys.- med. Sozietät zu Erlangen, Bd. 62 (1930), S. 267-284. Diese Arbeit bezeichne ich mit Schd. Hasse, Theorie der relativ-zyklischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper, Journ. f. d. r. u. a. Math., Bd. 172 (1934), S. 46.

³⁾ Schd., S. 276.

⁴⁾ Herbrand, Sur la théorie des groupes de décomposition, d'inertie et de ramification, Journ. de Liouville, Tome 10 (1932), S. 490. Dieses für die Primideale bewiesene Lemma gilt auch für die Primdivisoren.