PAPERS COMMUNICATED

101. A Theorem Concerning the Fourier Series of a Quadratically Summable Function.

By Tatsuo KAWATA.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Dec. 13, 1937.)

1. Recently Mr. R. Salem¹⁾ has proved the following theorem :

If f(x) is a bounded periodic function with period 2π and its Fourier coefficients are a_n , b_n , then the following relation holds for almost all values of x,

(1)
$$\lim_{s\to 0} \left[\frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{1 + s\sqrt{\log n}} \right] = f(x).$$

Actually he proved the relation (1) replacing more general sequence $\{\psi_n(s)\}\$ for $\{1/(1+s_1/\log n)\}$. The object of the present paper is to prove the validity of (1) under the condition that $f(x) \in L_2$, i.e. is quadratically summable. In this form the theorem says more than the well known theorem of Kolmogoroff-Seliverstoff-Plessner²⁾ concerning the convergence factor of the Fourier series of a quadratically summable function. But we can prove our theorem by using the theorem of Kolmogoroff-Seliverstoff-Plessner.

2. Theorem 1. If $f(x) \in L_2$ and is periodic with period 2π and a_n , b_n are its Fourier coefficients, then the relation (1) holds for almost all values of x.

Theorem 2. In Theorem 1, we can replace the sequence $\{1/(1+s_1/\log n)\}$ by the sequence $\{\psi_n(s)\}$ which satisfies the following conditions:

1°. $\{\psi_n(s)\}$ is the decreasing and convex sequence of positive functions, $0 < s \leq 1(\psi_0(s)=1)$.

2°. $\lim_{s\to 0} \psi_n(s) = 1$, (*n* fixed).

3°. $\lim_{n \to \infty} \psi_n(s) = 0$, (s fixed, >0).

4°. $\psi_n(s) = O$ $(\sqrt{\log n})$, (s fixed, >0).

5°. $\psi_n(s)$ has a finite number of maxima for any fixed n.

The proof of Theorem 2 is quite similar as that of Theorem 1 and so we only prove Theorem 1.

Let E_1 be the set of x such that

¹⁾ R. Salem, Sur une méthode de sommation, valable presque partout, pour les séries de Fourier de fonction continue, Comptes Rendus, **205** (1937), pp. 14-16.

[&]quot;, , Sur une généralisation du procédé de sommation de Poisson, ibid., 205 (1937), pp. 311-313.

²⁾ See, Zygmund, Trigonometrical series, Warsaw (1935), pp. 253-255.