13. On Siegel's Modular Function of the Higher Stufe.

By Masao SUGAWARA.

(Comm. by T. TAKAGI, M.I.A., Feb. 12, 1938.)

In this note we are concerned with modular functions of the degree n, of the dimension -2r and of the *stufe* m, which is an extension of Eisenstein's series of the *stufe* m, due to Mr. Hecke,¹⁾ to the case of the degree n, and deduce some of the corresponding properties.

We call Siegel's modular function of the degree n, of the dimension -2r, and of the *stufe* m the following function,

$$f_r(X; P_1, Q_1; m) = \sum_{\substack{P = P_1 \\ Q = Q_1 \\ (P, Q)_m}} \frac{1}{|PX + Q|^{2r}},^{2}$$

where X is a symmetric matrix with a positive "imaginary part" and P_1 , Q_1 form a given symmetrical pair of matrices with rational integral components and have no left common divisor, while \sum sums over mod m non-associated symmetrical pair of matrices P and Q which are congruent to P_1 and Q_1 respectively and have no left common divisor.

Here we call two symmetrical pairs of matrices, P, Q and P_0 , Q_0 "associated mod m" when there exists an unimodular matrix U, congruent to $\pm E \mod m$, such that the relations $P_0 = UP$, $Q_0 = UQ$ hold.

As in the case of Siegel's modular function of the 1st. stufe, it is absolutely and uniformly convergent when the integer $r > \frac{n(n+1)}{2}$ and represents an analytic function of X in the domain H in which X has a positive imaginary part.

The behavior under a modular substitution $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is as follows. Let us complete P, Q to a modular substitution $\begin{pmatrix} P & Q \\ U & V \end{pmatrix}$, then

$$\begin{pmatrix} P & Q \\ U & V \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} PA + QC & PB + QD \\ UA + VC & UB + VD \end{pmatrix}$$

is also a modular substitution, so that K=PA+QC and L=PB+QDform a symmetrical pair of matrices without a left common divisor, and $K\equiv K_1=P_1A+Q_1C$,

$$L \equiv L_1 = P_1 B + Q_1 D \mod m.$$

¹⁾ E. Hecke. Theorie der Eisensteinschen Reihen höherer Stufe and ihre Anwendung auf Funktionentheorie und Arithmetik.

²⁾ Capital letters represent n-dimensional matrices, while small letters represent integers.