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10. Notes on Fourier Series (IIl) : Absolute Summability.
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1. Let
(1) goan
be a series such that
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is convergent for positive p <<1. We denote (2) by f(p). If f(p) is of
bounded variation in (0,1), that is
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is bounded, then we say that (1) is absolutely summable (A) or simply
summable |A|.Y The absolutely convergent series is summable |A| and
the series summable | A| is summable (A).

Let f(x) be an integrable function, periodic with period 27, and its
Fourier series be

3) fzx) ~ —g‘l +§;—‘_.1 (a, cos nx+b, sin nx)s% A, (x).

Let {1.} be a sequence of real numbers. If the trigonometrical series
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is summable | A| for almost all z, then {1,} is called the absolutely
summable factor of (3).
B. N. Prasad® proved that if 2, is one of the following®
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then {4,} is the absolutely summable factor. We will prove that if
{2.} tends to zero and is convex and further

(6) iz log n-di,

converges, then {1,} is an absolutely summable factor. If 2, tends to
zero monotonously, then the convergence of (6) is equivalent to that of
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