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1. Statement of the theorem. Let S be a space in which a mea-
sure of Lebesgue type is defined, and let T be a one-to-one measure-
preserving transformation of S into itself. We do not assume that the
total measure mes (S) is finite. For any real valued function f(x) de-

fined on S, we define the funections j_'(oc),_f(x), f*(x) and fx(x) as follows:

n->0

{f(x)=1im LS,  f@)=lim LS AT,
n>o N =0 - n =0
f*@=Lub LSAT%), fr@)=g.1b. LS AT).
0sn<oo N =0 0Sn<o q =0

If f(x) is measurable and absolutely integrable on S, then we can
prove the following two theorems:
Theorem 1. For any pair of real numbers « and B3, we have

E(a, p)

{a mes (B, p)) < | @) do < p mes (B, ) ,
W
where El(a, p) =E [F@) > a, f) <B].

Consequently, « > implies mes (E'(a, B)) =0, and since this is true for

any pair of real numbers « and g with «> g, we have f(x)=f(x) almost
everywhere ; that is,

lim L 53 A(T) = (@)
n>o N, =0

exists almost everywhere.
Theorem 2. For any real number a« we have

2 mes (@) < [fw)dz, «mes (B.(@) = [f@de,
2 { B E @
where E*(a)=l£’[f*(x) > q] and E*(a)=lil [flx)<<d].

Theorem 1 is the Ergodic Theorem of Birkhoff in its form given
by A. Kolmogoroff.? Theorem 2 is new. We shall call Theorem 2

1) A.Kolmogoroff : Ein vereinfachter Beweis des Birkhoff-Khintchinschen Ergoden-
satzes, Recueil Math., 44 (1937), 366-368. See also E. Hopf: Ergodentheorie, Ergebnisse
der Math., Heft 5 (1937).



