66. Some Results in the Operator-Theoretical Treatment of the Markoff Process.

By Shizuo Kakutani.
Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, m.i.a., Oct. 12, 1939.)

Let us denote by $P(t, E)$ the transition probability that a point $t \in \Omega$ is transferred, by a simple Markoff process, into a Borel set E of Ω after the elapse of a unit-time. We have always $P(t, E) \geqq 0$ and $P(t, \Omega)=1$. We shall assume that $P(t, E)$ is completely additive for Borel sets E if t is fixed, and that $P(t, E)$ is Borel measurable in t if E is fixed. Then the probability $P^{(n)}(t, E)$ that t is transferred into E after the elapse of n unit-times is given recurrently by

$$
P^{(n)}(t, E)=\int_{\partial} P^{(n-1)}(t, d s) P(s, E), n=2,3, \ldots ; P^{(1)}(t, E)=P(t, E),
$$

where the integration is of Radon-Stieltjes type.
Consider the complex Banach space (\mathfrak{M}) of all the complex-valued completely additive set functions $x(E)$ defined for all Borel sets E of Ω. For any $x(E) \in(\mathfrak{M})$, its norm is defined by $\|x\|=$ total variation of $|x(E)|$ on Ω. Then the integral operator

$$
x \rightarrow T(x)=y: \quad y(E)=\int_{\Omega} x(d t) P(t, E)
$$

is a bounded linear operation which maps (\mathfrak{M}) into itself and $\|T\|=1$. On the other hand, if we consider the complex Banach space (M^{*}) of all the complex-valued bounded measurable functions $x(t)$ defined on Ω, with $\|x\|=$ l. u. $\mathrm{b} .|x(t)|$ as its norm, then

$$
x \rightarrow \bar{T}(x)=y: \quad y(t)=\int_{\Omega} P(t, d s) x(s)
$$

is also a bounded linear operation which maps (M^{*}) into itself and $\|\bar{T}\|=1$.

Our main object is to investigate the asymptotic behaviour of $P^{(n)}(t, E)$ for large n. Since, as is easily seen, T^{n} and \bar{T}^{n} are the integral operators defined by the kernel $P^{(n)}(t, E)$, our problem is transformed into the investigation of the iterations T^{n} and \bar{T}^{n} of T and \bar{T} respectively.

This investigation was carried out by K. Yosida. ${ }^{1)}$ Under the condition of N. Kryloff-N. Bogolioùboff : ${ }^{2)}$

[^0]
[^0]: 1) K. Yosida : Operator-theoretical treatment of the Markoff process, Proc. 14 (1938), 363-367.
 2) N. Kryloff-N. Bogolioùboff : Sur les probabilités en chaîne, C. R. Paris, 204 (1937), 1386-1388.
 N. Kryloff-N. Bogolioùboff: Les propriétés ergodiques des suites des probabilités en chaîne, C. R. Paris, 204 (1937), 1454-1455.
