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1. Introduction and Theorems. Let f(t) be an abstractly-valued
function defined on [0, 1] whose range lies in a Banach space . Under
L()(pI) (L()=L())we understand the class of all functions

measurable in the sense of S. Bochner such that :l[f(t)lIdt <
L() (p 1) is a Banach space with ][fll If(t)l]dt Y as its norm.

The purpose of the present note is to prove the following theorems"
Theorem 1. In an arbitrary space T let $ be a Borel family of

subsets that includes T, and a(E) be a non-negative set function which
is completely additive over . If an abstractly.valued function X(E),
defined from to a Banach space , is weakly absolutely continuous
(i. e., for each in , the numerical function X(E) is completely ad-
ditive and absolutely continuous), then X(E) is even strongly absolutely
continuous (i. e., X(E) is strongly completely additive, and for any

0 there exists a 0 such that X(E)I[ e whenever a(E) ).
Theorem . If is locally weakly compact, and if a sequence

{f(t)} (n=l, 2, ...) of elements of L() is equi-integrable, then {f(t)}
(n=l, 2, ...)contains a subsequence which converges weakly (as a
quence in L()) to an elemen f(0eL().

Theorem 3. If is locally weakly compact,, then L() (p 1) /s
also locally weakly compact.

Theorem . If . is locally weakly compact, then L() is weakly
complete.

Theorem 4 is a generalization of a result of S. Bochner-A. E.
Taylor,D who assumed that is reflexive and that and both satisfy
the condition (D). Theorem 22) is an analogue of H. Lebesgue’s theorem,3)

which is concerned with numerical-valued functions. These two theorems
will be proved by using Theorem 1, and this theorem was announced
without proof by B.J. Pettis4 under the additional assumption that T

is expressible in the form" T=, T with a(T) o, i= 1, 2,
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