13. Ergodic Theorems and the Markoff Process with a Stable Distribution.

By Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., March 12, 1940.)

1. Introduction. A Markoff process $P(t, E)^{1}$ is called to have a stable distribution $\varphi(E)$, if there exists a completely additive non-negative set function $\varphi(E)$ (with $\varphi(\mathcal{Q})=1$) defined for all Borel set $E \subset \mathcal{Q}$ such that

(1)
$$\int_{\mathcal{Q}} \varphi(dt) P(t, E) = \varphi(E) \quad \text{for any Borel set } E \subset \mathcal{Q}.$$

For example, the Markoff process defined by a φ -measure preserving transformation S(t): P(t, E) = 1 if $S(t) \in E$, = 0 if $S(t) \in E$, has $\varphi(E)$ as its stable distribution; and another example thereof is given by the Markoff process with symmetric φ -density $p(t, s): P(t, E) = \int_E p(t, s) \varphi(ds)$, p(t, s) = p(s, t).

It is the purpose of the present paper to discuss such a class of Markoff processes. The same problem is also discussed by K. Yosida²⁾ in the preceding paper. He has proved that a mean ergodic theorem (for exact formulation see Theorem 2 below) holds for any Markoff process with stable distributions. Since this class of Markoff processes contains the case of measure preserving transformations, his result is a generalization of the mean ergodic theorem of J. v. Neumann.³⁾ In the present paper, we shall first prove (Theorem 1) that even an ergodic theorem of G. D. Birkhoff's type⁴⁾ is valid for such a class of Markoff processes. Indeed, we shall prove that for any bounded Borel measurable function x(t) defined on $\mathcal Q$ the sequence $\left\{\frac{1}{N}\sum_{n=1}^N x_n(t)\right\}$ (N=1, 2, ...), where

(2)
$$x_n(t) = \int_0^{\infty} P^{(n)}(t, ds) x(s) , \qquad n = 1, 2, ... ,$$

converges φ -almost everywhere on \mathcal{Q} . This result is, in essential, due to J. L. Doob.⁵⁾ We shall next show that the mean ergodic theorem

¹⁾ As for the notions concerning Markoff process, see:

S. Kakutani: Some results in the operator-theoretical treatment of the Markoff process, Proc. 15 (1939), 260–264. K. Yosida: Operator-theoretical treatment of the Markoff process, Proc. 14 (1938), 363–367, Proc. 15 (1939), 127–130.

²⁾ K. Yosida: Markoff process with stable distribution, Proc. 16 (1940), 43-48.

³⁾ J. v. Neumann: Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. U.S.A., 18 (1932), 70-82.

⁴⁾ G. D. Birkhoff: Proof of the ergodic theorem, Proc. Nat. Acad. U.S.A., 18 (1932), 650-655.

⁵⁾ J. L. Doob: Stochastic processes with an integral valued parameter, Trans. Amer. Math. Soc., 44 (1938), 87-150.