82. A Generalization of Poincaré-space.

By Masao SUGAWARA.

Tokyo Bunrika-Daigaku, Tokyo.

(Comm. by T. Takagi, M.I.A., Oct. 12, 1940.)

The set of symmetrical matrices A of dimension n satisfying the relation $E-A\bar{A}>0$ is called the space $\mathfrak A$ and A its points. $\mathfrak A$ is bounded, convex, and the points A satisfying the relation $|E-A\bar{A}|=0$ make the boundary of the space $\mathfrak A$.

Let $U=\begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}$ be 2n-dimensional matrices with the properties (1) U'JU=J, (2) $U'S\bar{U}=S$, where $J=\begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}$, $S=\begin{pmatrix} E & 0 \\ 0 & -E \end{pmatrix}$, then we call the transformations of the space $\mathfrak A$ into itself $W=(U_1Z+U_2)(U_3Z+U_4)^{-1}$ the displacements of the space $\mathfrak A$.

We took as a line element the expression $ds = \sqrt{Sp dA (E - \overline{A}A)^{-1} \overline{dA} (E - A\overline{A})^{-1}}$ invariant under displacements and regarded $\mathfrak A$ as a Riemannian space. However it seems to me more natural to introduce another metric which we will investigate here.

Let $W_i = (U_1Z_i + U_2)(U_3Z_i + U_4)^{-1}$, then by the property (1), we get

$$\begin{aligned} &(W_1 - W_4)^{-1} (W_1 - W_3) (W_2 - W_3)^{-1} (W_2 - W_4) \\ &= &(U_3 Z_4 + U_4) (Z_1 - Z_4)^{-1} (Z_1 - Z_3) (Z_2 - Z_3)^{-1} (Z_2 - Z_4) (U_3 Z + U_4)^{-1}. \end{aligned}$$

Hence $h(Z_1, Z_2, Z_3, Z_4) = |Z_1 - Z_4|^{-1} |Z_1 - Z_3| |Z_2 - Z_3|^{-1} |Z_2 - Z_4|$ is invariant under displacements. We call it the "anharmonic ratio of the four ordered points Z_1, Z_2, Z_3, Z_4 ."

Especially
$$h(0, A, \lambda A, -\lambda A) = \left(\frac{1+\lambda^{-1}}{1-\lambda^{-1}}\right)^n$$
.

Let $\lambda_1 A$ and $\lambda_2 A$ be the intersecting points of the euclidean straight line $Z=\lambda A$, passing through 0 and $A \neq 0$, with the boundary of the space \mathfrak{A} , where λ varies over real numbers. Then $\lambda_2 = -\lambda_1$ and λ_1 is the reciprocal of the positive quadratic root of the greatest proper value of the non-negative hermitian form $A\bar{A}$, $(A \neq 0)^2$; for $|E-\lambda^2 A\bar{A}|=0$.

Now we define the distance (0, A) between 0 and $A \in \mathbb{X}$ as the quantity $\frac{1}{2n} \log h(0, A, \lambda_1 A, -\lambda_1 A) = \frac{1}{2} \log \frac{1 + \lambda_1^{-1}}{1 - \lambda_1^{-1}}$, then the distance (0, A) > 0, because $0 < \lambda_1^{-1} \le 1$; and $(0, A) \to 0$ when $A \to 0$.

We define (0,0)=0. (0,A) is invariant under any displacement fixing the point 0, $W=U_1AU_1'$, $U_1'\bar{U}_1=E$, because $W\bar{W}=U_1A\bar{A}\bar{U}_1'$ and (0,A) depends only on a proper value of $A\bar{A}$.

Let B^* be the image of $B \in \mathfrak{A}$ by a displacement transforming $A \in \mathfrak{A}$ to 0. We define the distance (A, B) between two points A and

¹⁾ Masao Sugawara, Über eine allgemeine Theorie der Fuchsschen Gruppen und Theta-Reihen. Ann. Math. 41.

²⁾ λ_1^{-1} is called the norm of a matrix A.