82. A Generalization of Poincaré-space.

By Masao Sugawara.
Tokyo Bunrika-Daigaku, Tokyo.
(Comm. by T. TaKagi, m.I.A., Oct. 12, 1940.)

The set of symmetrical matrices A of dimension n satisfying the relation $E-A \bar{A}>0$ is called the space \mathfrak{A} and A its points. \mathfrak{A} is bounded, convex, and the points A satisfying the relation $|E-A \bar{A}|=0$ make the boundary of the space \mathfrak{A}.

Let $U=\left(\begin{array}{ll}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$ be $2 n$-dimensional matrices with the properties (1) $U^{\prime} J U=J$, (2) $U^{\prime} S \bar{U}=S$, where $J=\left(\begin{array}{rr}0 & E \\ -E & 0\end{array}\right), S=\left(\begin{array}{rr}E & 0 \\ 0 & -E\end{array}\right)$, then we call the transformations of the space \mathfrak{A} into itself $W=\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1}$ the displacements of the space \mathfrak{N}.

We took as a line element the expression $d s=\sqrt{S p d A(E-\bar{A} A)^{-1} \overline{d A}(E-A \bar{A})^{-1}}$ invariant under displacements and regarded \mathfrak{A} as a Riemannian space. ${ }^{1)}$ However it seems to me more natural to introduce another metric which we will investigate here.

Let $W_{i}=\left(U_{1} Z_{i}+U_{2}\right)\left(U_{3} Z_{i}+U_{4}\right)^{-1}$, then by the property (1), we get

$$
\begin{aligned}
& \left(W_{1}-W_{4}\right)^{-1}\left(W_{1}-W_{3}\right)\left(W_{2}-W_{3}\right)^{-1}\left(W_{2}-W_{4}\right) \\
& \quad=\left(U_{3} Z_{4}+U_{4}\right)\left(Z_{1}-Z_{4}\right)^{-1}\left(Z_{1}-Z_{3}\right)\left(Z_{2}-Z_{3}\right)^{-1}\left(Z_{2}-Z_{4}\right)\left(U_{3} Z+U_{4}\right)^{-1}
\end{aligned}
$$

Hence $h\left(\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \boldsymbol{Z}_{3}, \boldsymbol{Z}_{4}\right)=\left|\boldsymbol{Z}_{1}-\boldsymbol{Z}_{4}\right|^{-1}\left|\boldsymbol{Z}_{1}-\boldsymbol{Z}_{3}\right|\left|\boldsymbol{Z}_{2}-\boldsymbol{Z}_{3}\right|^{-1}\left|\boldsymbol{Z}_{2}-\boldsymbol{Z}_{4}\right|$ is invariant under displacements. We call it the "anharmonic ratio of the four ordered points $Z_{1}, Z_{2}, Z_{3}, Z_{4}$."

Especially $h(0, A, \lambda A,-\lambda A)=\left(\frac{1+\lambda^{-1}}{1-\lambda^{-1}}\right)^{n}$.
Let $\lambda_{1} A$ and $\lambda_{2} A$ be the intersecting points of the euclidean straight line $Z=\lambda A$, passing through 0 and $A \neq 0$, with the boundary of the space \mathfrak{A}, where λ varies over real numbers. Then $\lambda_{2}=-\lambda_{1}$ and λ_{1} is the reciprocal of the positive quadratic root of the greatest proper value of the non-negative hermitian form $A \bar{A},(A \neq 0)^{2}$; for $\left|E-\lambda^{2} A \bar{A}\right|=0$.

Now we define the distance $(0, A)$ between 0 and $A \in \mathfrak{A}$ as the quantity $\frac{1}{2 n} \log h\left(0, A, \lambda_{1} A,-\lambda_{1} A\right)=\frac{1}{2} \log \frac{1+\lambda_{1}^{-1}}{1-\lambda_{1}^{-1}}$, then the distance $(0, A)>0$, because $0<\lambda_{1}^{-1} \leqq 1$; and $(0, A) \rightarrow 0$ when $A \rightarrow 0$.

We define $(0,0)=0 . \quad(0, A)$ is invariant under any displacement fixing the point $0, W=U_{1} A U_{1}^{\prime}, U_{1}^{\prime} \bar{U}_{1}=E$, because $W \bar{W}=U_{1} A \bar{A} \bar{U}_{1}^{\prime}$ and ($0, A$) depends only on a proper value of $A \bar{A}$.

Let B^{*} be the image of $B \in \mathfrak{H}$ by a displacement transforming $A \in \mathfrak{A}$ to 0 . We define the distance (A, B) between two points A and

[^0]
[^0]: 1) Masao Sugawara, Über eine allgemeine Theorie der Fuchsschen Gruppen und Theta-Reihen. Ann. Math. 41.
 2) λ_{1}^{-1} is called the norm of a matrix A.
