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1. Introduction.

In a previous paper® I have constructed a theory of automorphic
functions of higher dimensions. Using the same notations as in that
paper, we will call the space 2 the set of symmetrical matrices Z of
the dimension n with the condition E>Z'Z. We put now R(Z)=
—log | E—ZZ|, that is | E—ZZ |=¢ ®®, Then R(Z)—o0 or « accord-
ing as Z—O or Z tends to the boundary of the space 2 and con-

versely.
Matrices U of dimension 2n satisfying the conditions UJU=J,

UST=S, where J=<_OE ) and 5= (‘g _OE) are of the form U=

( g; gj)=( g; gj) and form a group 7.

When Z is an inner or a boundary point of A,
W=(UZ+ U,) (UsZ+ U, ! is also an inner or a boundary point of A
respectively, so that we called this transformation a displacement of the
space A induced by Uel. We then have

Lemma 1. If W=(UZ+ U)UsZ+U)", U=(g; g:)el", then

o |E-WW| . - _
1UZ+ U2 =LE=WW gt is | U2+ U | 2=er@-2m
s+ U, \E—ZZ| 4
Proof. Every point of 2 can be represented in the form Z=PQ,
where P, @ make a pair of symmetrical matrices with the condition

|Q|30. Let (gi)=U<g) then P, Q; make also a pair of sym-

metrical matrices with the condition |Q;|3c0, such that W=P,Q;},
and

E—WW=E-Q'PiP\Qi*= @ (QiQ:— PiP)Q;!
= (GP+UQY AQQ—-PP)UP+UQ™
= (UZ+ UY NE-ZZ\UsZ+ U)™

Taking the determinants, the lemma follows at once.

1) Cf. H. Poincaré. Memoire sur les fonctions fuchsiennes. Memoire sur les
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