78. A Converse of Lebesgue's Density Theorem.

By Shunji Kametani.
Taga Higher Technical School, Ibaragi.
(Comm. by S. Kakeya, M.I.A., Oct. 12, 1940.)

I. The main object of the present note is to see that a converse of Lebesgue's density theorem holds.

We shall consider, for brevity, sets of points in a Euclidean plane R^{2} only. But the results which will be obtained can obviously be extended to spaces R^{m} of any number of dimensions.

The Lebesgue outer measure of a set E in R^{2} will be denoted by $|E|$. Let x be a point of R^{2} and Q an arbitrary closed square containing x with sides parallel to the coordinate-axes.

We shall denote by $\bar{D}(x, E)$ and $\underline{D}(x, E)$ the superior and the inferior limit respectively of the ratio $|Q E| /|Q|$ as the diameter of Q tends to 0 or $|Q| \rightarrow 0$, and shall call them the upper and the lower density of E at x respectively. If they are equal to each other at x, then the common value will be called the density of E at x. The points at which the density of E are equal to 0 are termed points of dispersion for E.

It is well known by Lebesgue's density theorem that, if a set of points are measurable, almost every point of its complementary set is a point of dispersion for the given set. ${ }^{1)}$
II. We shall prove the following theorem which evidently contains a converse of the above proposition.

Theorem 1. Let E be a point-set whose lower density is 0 at almost every point of the complementary set of E. Then the set E is measurable.

Proof. We can obviously assume, without loss of generality, that the set E is bounded. Let G be a bounded open set containing E and ε a given positive number. From the assumption of the present theorem, there exists, for almost every point x of $H=G-E$, a sequence of squares $\left\{Q_{n}(x)\right\}$ such that

$$
\begin{equation*}
\frac{\left|E \cdot Q_{n}(x)\right|}{\left|Q_{n}(x)\right|}<\varepsilon, x \in Q_{n}(x),\left|Q_{n}(x)\right| \rightarrow 0(n \rightarrow \infty) \text { and } Q_{n}(x)<G \tag{1}
\end{equation*}
$$

Denoting by \mathfrak{F} the family of all the squares which belong to any one of such sequences, we find that \mathfrak{F} covers the set H almost everywhere in the sense of Vitali. ${ }^{2}$) According to the covering theorem of Vitali ${ }^{2}$ we can extract from \mathfrak{F} a finite or enumerable sequence $\left\{Q_{n}\right\}$ of squares no two of which have common points, such that

$$
\left|H-\sum_{n} Q_{n}\right|=0
$$

[^0]
[^0]: 1) For example, S. Saks. Théorie de l'intégrale (1933), p. 55.
 2) Saks. Loc. cit. 33-35.
