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119. Normal Basis of a Qaasi-field.
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(Comm. by T. TAKAGI, M.I.A., Dec. 12, 1940.)

Recently N. Jacobson extended the fundamental theorem of the
Galois theory to quasi-fidds in the following sense’S: Let P be a quasi-
field and there be given a finite group of outer automorphisms) (= {E,
S, ..., T}, of order, say . If # is the sub-quasifield of invariant ele-
ments, then P has the rank n over (at both left and right) and
there exists a 1-1 correspondence between subgroups of ( and sub-
quasifields between P and (P. The purpose of the present note is to
show that moreover P possesses a (one-sided) normal basis over ,
that is, there exists an element b in P such that the n conjugates, so
to speak, bE, bs, ..., bT of b form a (linearly independent)left (say)-basis
of P over (P. The proof is a generalization of M. Deuring’s second
proof to the theorem of commutative normal bases ;) the proof has
been emancipated, by the present writer, from the restriction on the
semisimplicity of the group ring. But it involves modifications caused
by the non-commutativity and makes use of a generalization of the
I-Iilbert-Speiser theorem in a refined form.

Let P, (, n and be as above. Denote the center of P by Z,
and put K-P c Z. Let further K* be a finite extension of K, and let

P=PK.
be the rings obtained from P and ( by extending the ground field K
to K*. (They are not, in general, quasi-fields any fnore). Automor-
phisms E, S, ..., T of P can be looked upon, in natural manner, as
those of P* (and in fact 9" consists of the totality of invariant ele-
ments).

Lemna 1 (Generalized Hilbert-Speiser theorem). Let to each S in
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Appendix.
6) We are interested only in the case where P has an infinit ’ank over its

center. For, otherwise the theorem can readily be reduced to the commutative case,
because of Jacobson’s result.


